QPoint start(agvs[i].current_x*25+200, (agvs[i].current_y+1)*25+50); QPoint end(next_node->x* 25 + 200, next_node->y* 25 + 50);,畫出Qpoint,start和end的矩形

时间: 2024-03-09 12:47:37 浏览: 17
如果您想在 `start` 和 `end` 两个点的位置上绘制矩形,可以使用 `painter.drawRect()` 方法。例如: ``` // 绘制 start 点位置上的矩形 painter.drawRect(QRect(start.x(), start.y(), nodeSize, nodeSize)); // 绘制 end 点位置上的矩形 painter.drawRect(QRect(end.x(), end.y(), nodeSize, nodeSize)); ``` 这将在 `start` 点和 `end` 点的位置上分别绘制一个 `nodeSize x nodeSize` 像素大小的矩形。如果您想更改矩形的颜色和填充方式,可以使用 `setPen()` 和 `setBrush()` 方法。例如,以下代码将设置矩形的填充颜色为红色: ``` painter.setPen(Qt::NoPen); painter.setBrush(QBrush(Qt::red)); painter.drawRect(QRect(start.x(), start.y(), nodeSize, nodeSize)); ``` 这将绘制一个红色矩形,没有边框。同样,您需要在绘制完矩形后恢复画笔和画刷的默认值,以便后续绘图不受影响。
相关问题

//畫出agv空間 for (int i = 0; i < agvs.size(); i++) { if (i < paths.size() && !paths[i].empty() ) { Node *next_node = paths[i][0]; QColor color(128, 138, 135); QPen pen(color, 14); painter.setPen(pen); QPoint start(agvs[i].current_x*25+200+nodeSize/2, (agvs[i].current_y+1)*25+50+nodeSize/2); QPoint end(next_node->x* 25 + 200 +nodeSize/2, (next_node->y+1)* 25 + 50 +nodeSize/2); painter.drawLine(start, end); }},修改爲會順澤下一個坐標的方向,根據agv的current坐標向前面加1

以下是修改后的代码: ``` //画出agv空间 for (int i = 0; i < agvs.size(); i++) { if (i < paths.size() && !paths[i].empty()) { Node *next_node = paths[i][0]; QColor color(128, 138, 135); QPen pen(color, 14); painter.setPen(pen); QPoint start(agvs[i].current_x*25+200+nodeSize/2, (agvs[i].current_y+1)*25+50+nodeSize/2); QPoint end; if (agvs[i].current_x == next_node->x && next_node->y > agvs[i].current_y) { end.setX(next_node->x*25+200+nodeSize/2); end.setY((next_node->y+1)*25+50+nodeSize/2); } else if (agvs[i].current_x == next_node->x && next_node->y < agvs[i].current_y) { end.setX(next_node->x*25+200+nodeSize/2); end.setY((next_node->y)*25+50+nodeSize/2); } else if (agvs[i].current_y == next_node->y && next_node->x > agvs[i].current_x) { end.setX((next_node->x)*25+200+nodeSize/2); end.setY((next_node->y+1)*25+50+nodeSize/2); } else if (agvs[i].current_y == next_node->y && next_node->x < agvs[i].current_x) { end.setX((next_node->x+1)*25+200+nodeSize/2); end.setY((next_node->y+1)*25+50+nodeSize/2); } painter.drawLine(start, end); } } ``` 这个修改后的代码会根据 AGV 的 current 坐标向前面加1,来画出从当前坐标到下一个坐标的连线。如果下一个坐标在 AGV 的当前坐标的右边,那么就会向右画出连线;如果下一个坐标在 AGV 的当前坐标的左边,那么就会向左画出连线;如果下一个坐标在 AGV 的当前坐标的上面,那么就会向上画出连线;如果下一个坐标在 AGV 的当前坐标的下面,那么就会向下画出连线。

QPoint start(agvs[i].current_x*25+200+nodeSize/2, (agvs[i].current_y+1)*25+50+nodeSize/2); if (agvs[i].current_x == next_node->x && next_node->y > agvs[i].current_y)//向下 { QPoint end(next_node->x* 25 + 200 +nodeSize/2, (agvs[i].current_y+1)*25+50+nodeSize/20+16); painter.drawLine(start, end); }, // 畫出地圖 for(int i=0;i<31;i++) for(int j=0;j<31;j++) { switch(_MAP[i][j]) { case 1://画障礙物 painter.setBrush(QBrush(Qt::black,Qt::SolidPattern)); painter.drawRect(QRect((i*25+200),(j+1)*25+50,nodeSize,nodeSize)); break; case 0://画地圖 painter.setPen(QColor(66, 139, 230)); // 设置线条颜色 painter.setBrush(QBrush(QColor(66, 139, 230),Qt::SolidPattern)); painter.drawRect(QRect((i*25+200),(j+1)*25+50,nodeSize,nodeSize));,將地圖上,Qpoint之内的點都變爲紅色

您可以使用以下代码将地图上所有在 `QPoint` 内的点变为红色: ``` QRect rect(start, end); // 创建一个包含起点和终点的矩形 for(int i=0;i<31;i++) { for(int j=0;j<31;j++) { QPoint point(i*25+200+nodeSize/2, (j+1)*25+50+nodeSize/2); if(rect.contains(point)) { // 如果点在矩形内 painter.setPen(QColor(Qt::red)); // 设置线条颜色为红色 painter.setBrush(QBrush(Qt::red, Qt::SolidPattern)); // 设置笔刷颜色为红色 painter.drawRect(QRect((i*25+200),(j+1)*25+50,nodeSize,nodeSize)); // 画一个矩形,颜色为红色 } } } ``` 这会遍历地图上的所有点,如果该点在 `QPoint` 所确定的矩形内,则将该点颜色设置为红色。请注意,这可能会导致一些障碍物也被涂成红色,因此您可能需要修改该代码以仅在地图上的可通行区域内绘制红色矩形。

相关推荐

for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad()){ painter.drawPixmap(agvs[i].getCurrentX()*25+200-(nodeSpacing-nodeSize)/2,(agvs[i].getCurrentY()+1)*25+50-(nodeSpacing-nodeSize)/2,25,25,QPixmap(":/new/prefix1/agvload.png").scaled(25,25)); } else { painter.drawPixmap(agvs[i].getCurrentX()*25+200-(nodeSpacing-nodeSize)/2,(agvs[i].getCurrentY()+1)25+50-(nodeSpacing-nodeSize)/2,25,25,QPixmap(":/new/prefix1/agv1.png").scaled(25,25)); },//模擬小車行駛 for (int i = 0; i < agvs.size(); i++) { for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (tasks[completed_task_index].completed == 2 ) { // 如果已经完成任务 paths[i].clear(); continue; // 跳过此次循环 } if (! paths[i].empty()) { int cur_x = agvs[i].getCurrentX(); int cur_y = agvs[i].getCurrentY(); Node next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; // 计算电量的减少量 float power_consumption = distance /20; //_MAP[cur_x][cur_y] = 1; QTimer::singleShot(time, this, &, i, next_node, cur_x, cur_y, power_consumption { // 离开当前位置时将标记设为0 //MAP[cur_x][cur_y] = 0; agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); // 更新电量 agvs[i].setpower(agvs[i].power- power_consumption); this->update(); // 在窗口中重绘 }); } },修改代碼為:讓agv實現在坐標點之間模擬移動,而不是一跳一跳

void MainWindow::moveAgvs() { Astar astar; std::vector<std::vector<Node*>> paths(agvs.size()); // 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getState() == false) { if (agvs[i].getLoad()){//如果是負載的狀態,則任務的起點到任務的終點 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { agvs[i].setState(true); agvs[i].setLoad(false); tasks[i].setCompleted(2); task_to_agv(); } Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path_to_end = astar.getPath(start_node, end_node1); path_to_end.erase(path_to_end.begin()); std::vector<Node*> path; path.insert(path.end(), path_to_end.begin(), path_to_end.end()); paths[i] = path;} else { //如果是空載的狀態,則行駛到任務的起點 //如果agv已經到達任務起點,變爲負載狀態 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { agvs[i].setLoad(true); } Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path_to_start = astar.getPath(start_node, end_node); std::vector<Node*> path; path.insert(path.end(), path_to_start.begin() + 1, path_to_start.end()); paths[i] = path;} } //模擬小車行駛 for (int i = 0; i < agvs.size(); i++) { if (! paths[i].empty()) { Node* next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; QTimer::singleShot(time, this, &, i, next_node { agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); //std::cout << "AGV " << agvs[i].getid() << " current_x: " << agvs[i].getCurrentX() << " current_y: " << agvs[i].getCurrentY() <<std::endl; this->update(); }); } } } },for(int i=0;i<31;i++) for(int j=0;j<31;j++){ if (i<30) { // Create the nodes painter.drawLine(i*25+200+nodeSize,(j+1)*25+50+nodeSize/2,(i+1)*25+200,(j+1)25+50+nodeSize/2); } if (j <30) { painter.drawLine(i25+200+nodeSize/2,(j+1)25+50+nodeSize,i25+200+nodeSize/2,(j+2)*25+50); } },將path的路徑坐標兩點之間的綫變成黃色

for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true); std::cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (completed_task_index != -1) { tasks[completed_task_index].completed = 2; } task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path = astar.getPath(start_node, end_node1); path.erase(path.begin()); paths[i] = path; } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path = astar.getPath(start_node, end_node); path.erase(path.begin()); paths[i] = path; } } }, if (!paths[i].empty()) { QPainter painter(this); painter.setPen(QPen(Qt::red, 5)); // 设置画笔颜色和宽度 for (int j = 0; j < paths[i].size() - 1; j++) { // 遍历每个子数组中的点 QPoint start(paths[i][j]->x * 25 + 200, paths[i][j]->y * 25 + 50); QPoint end(paths[i][j + 1]->x * 25 + 200, paths[i][j + 1]->y * 25 + 50); painter.drawLine(start, end); } },一運行繪製path路綫,就白屏卡死,怎麽修改代碼

//模擬小車行駛 for (int i = 0; i < agvs.size(); i++) { for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (tasks[completed_task_index].completed == 2 ) { // 如果已经完成任务 paths[i].clear(); continue; // 跳过此次循环 } if (! paths[i].empty()) { int cur_x = agvs[i].getCurrentX(); int cur_y = agvs[i].getCurrentY(); Node*next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; // 计算电量的减少量 float power_consumption = distance /20; //MAP[cur_x][cur_y] = 1; //QTimer::singleShot(time, this, &, i, next_node, cur_x, cur_y, power_consumption { // 离开当前位置时将标记设为0 //MAP[cur_x][cur_y] = 0; agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); // 更新电量 agvs[i].setpower(agvs[i].power- power_consumption); QPropertyAnimation animation = new QPropertyAnimation(agvs[i].animationTarget, "pos"); animation->setDuration(time); animation->setStartValue(QPoint(cur_x25+200-(17)/2, (cur_y+1)25+50-(17)/2)); animation->setEndValue(QPoint(next_node->x25+200-(17)/2, (next_node->y+1)*25+50-(17)/2)); animation->start(QAbstractAnimation::DeleteWhenStopped); connect(animation, &QPropertyAnimation::finished, this, i, next_node, power_consumption { //MAP[next_node->x][next_node->y] = 1; this->update(); // 在窗口中重绘 }); paths[i].erase(paths[i].begin()); } },爲什麽畫面無法運行

最新推荐

recommend-type

基于Java实现的明日知道系统.zip

基于Java实现的明日知道系统
recommend-type

NX二次开发uc1653 函数介绍

NX二次开发uc1653 函数介绍,Ufun提供了一系列丰富的 API 函数,可以帮助用户实现自动化、定制化和扩展 NX 软件的功能。无论您是从事机械设计、制造、模具设计、逆向工程、CAE 分析等领域的专业人士,还是希望提高工作效率的普通用户,NX 二次开发 Ufun 都可以帮助您实现更高效的工作流程。函数覆盖了 NX 软件的各个方面,包括但不限于建模、装配、制图、编程、仿真等。这些 API 函数可以帮助用户轻松地实现自动化、定制化和扩展 NX 软件的功能。例如,用户可以通过 Ufun 编写脚本,自动化完成重复性的设计任务,提高设计效率;或者开发定制化的功能,满足特定的业务需求。语法简单易懂,易于学习和使用。用户可以快速上手并开发出符合自己需求的 NX 功能。本资源内容 提供了丰富的中英文帮助文档,可以帮助用户快速了解和使用 Ufun 的功能。用户可以通过资源中的提示,学习如何使用 Ufun 的 API 函数,以及如何实现特定的功能。
recommend-type

别墅图纸编号D020-三层-10.00&12.00米- 效果图.dwg

别墅图纸编号D020-三层-10.00&12.00米- 效果图.dwg
recommend-type

操作系统实验指导书(2024)单面打印(1).pdf

操作系统实验指导书(2024)单面打印(1).pdf
recommend-type

基于Python实现的校园教务系统

Api Function | Api | Description | Argument | | :-------- | :----- | :---- | | user_login | 登陆函数 | account, password, user_type=1, use_cookie_login=True | | get_schedule | 课表查询 | schedule_year=None, schedule_term=None, schedule_type=None | | get_score | 成绩查询 | score_year=None, score_term=None, use_api=0 | | get_info | 用户信息查询 | | | get_place_schedule| 教学场地课表查询(可用于空教室查询) |campus_list=None,
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。