其中,dhparam2matrix是将D-H参数转换为齐次变换矩阵的函数,matrix2adjoint是将齐次变换矩阵转换为李代数扰动的函数,simplify是用于简化表达式的函数。显示未定义

时间: 2024-03-02 20:48:14 浏览: 27
非常抱歉,我的回答中未定义这些函数,这是我的疏忽。下面是相应的函数定义: ``` function T = dhparam2matrix(theta, d, a, alpha) % DH参数转齐次变换矩阵 T = [cos(theta), -sin(theta)*cos(alpha), sin(theta)*sin(alpha), a*cos(theta); sin(theta), cos(theta)*cos(alpha), -cos(theta)*sin(alpha), a*sin(theta); 0, sin(alpha), cos(alpha), d; 0, 0, 0, 1]; end function Ad = matrix2adjoint(T) % 齐次变换矩阵转李代数扰动 R = T(1:3, 1:3); p = T(1:3, 4); Ad = [R, zeros(3); hat(p)*R, R]; end function H = hat(v) % hat算子 H = [0, -v(3), v(2); v(3), 0, -v(1); -v(2), v(1), 0]; end ``` 这些函数分别用于将D-H参数转换为齐次变换矩阵、将齐次变换矩阵转换为李代数扰动和计算hat算子。在使用以上的MATLAB代码时,需要提前定义这些函数。
相关问题

构建五参数(ay,a,d,0pB)的修正MD-H模型来表达各相邻连杆间的变换关系。 当机器人本应该互相平行的关节轴线由于加工误差和装配误差等原因造成一定的偏差不能达到完全平行。参数β,表示在坐标系上绕y,轴转动B微小角度变换来修正关节轴。在经典D-H模型的变换矩阵’T右乘矩阵Rot(y;B),得到上述五个运动学参数的齐次变换矩阵A,如式(3.13)所示。定义当关节轴z,和z.1不平行时,B=0;关节轴z;和z4+1平行时,d;= 0考虑绕y,轴的旋转角度β有微小变化,其余参数保持经典D-H参数不变。 基于修正MD-H模型对机器人进行运行学建模,存在几何参数有a,a,d;,0,和β。当这些参数存在微小误差时,机器人的实际相邻连杆之间的变换关系和理论相邻连杆之间变换关系会存在一定的偏差,导致最后实际和理论的末端位姿坐标也存在误差,分别用△a、△c、Ad;、A0,和Aβ;来表示D-H模型中的五个几何参数误差。 利用微分变换原理将机器人各个连杆机构之间的微小原始偏差合成积累到末端位姿的误差视为各个连杆机构进行微分变换综合作用导致的结果,基于MD-H运动学模型建立误差模型。 由于各个连杆机构都存在几何参数的误差,机器人的相邻连杆之间的变换矩阵也存在着微小偏差,根据微分运动变换原理,连杆之间的实际变换矩阵和理论变换矩阵存在如下关系:由于机器人的误差补偿对象是末端连杆所在位姿坐标,所以将式(3.18)中表达的连杆i误差项转换到末端位姿。根据式(3.12),其转换关系式为:根据这些内容能够帮我生成MATLAB代码构建四自由度机器人的误差模型

根据上述内容,可以构建四自由度机器人的误差模型的MATLAB代码如下: ``` syms a1 a2 d1 d2 beta delta_a1 delta_a2 delta_d1 delta_d2 delta_beta real; % 原始的D-H参数 a = [a1, a2, 0, 0]; d = [d1, d2, 0, 0]; alpha = [0, 0, pi/2, 0]; theta = [0, 0, 0, beta]; % 修正的D-H参数 a_m = a + [delta_a1, delta_a2, 0, 0]; d_m = d + [delta_d1, delta_d2, 0, 0]; theta_m = theta + [0, 0, 0, delta_beta]; % 原始的变换矩阵 T = eye(4); for i = 1:4 T = T * dhparam2matrix(theta(i), d(i), a(i), alpha(i)); end % 修正的变换矩阵 T_m = eye(4); for i = 1:4 T_m = T_m * dhparam2matrix(theta_m(i), d_m(i), a_m(i), alpha(i)); end % 误差项 delta_T = T_m * inv(T); Adelta_T = matrix2adjoint(delta_T); Adelta_T = simplify(Adelta_T, 'Steps', 100); % 将误差项转换到末端位姿 Adelta_T_end = eye(4); for i = 1:3 Adelta_T_end = dhparam2matrix(theta(i), d(i), a(i), alpha(i)) * Adelta_T_end; end Adelta_T_end = Adelta_T_end * Adelta_T; Adelta_T_end = simplify(Adelta_T_end, 'Steps', 100); % 末端位姿误差 p_error = Adelta_T_end(1:3, 4); R_error = Adelta_T_end(1:3, 1:3); % 计算导数 J_p = jacobian(p_error, [delta_a1, delta_a2, delta_d1, delta_d2, delta_beta]); J_R = jacobian(reshape(R_error.', 1, []), [delta_a1, delta_a2, delta_d1, delta_d2, delta_beta]); % 构建误差模型 delta_q = [delta_a1; delta_a2; delta_d1; delta_d2; delta_beta]; delta_p = [p_error; reshape(R_error.', 1, [])]; J = [J_p; J_R]; delta_p = simplify(delta_p, 'Steps', 100); J = simplify(J, 'Steps', 100); ``` 其中,`dhparam2matrix`是将D-H参数转换为齐次变换矩阵的函数,`matrix2adjoint`是将齐次变换矩阵转换为李代数扰动的函数,`simplify`是用于简化表达式的函数。最后,`delta_q`表示D-H模型中的五个几何参数误差,`delta_p`表示末端位姿误差,`J`表示误差模型的雅可比矩阵。

c++对一个复数矩阵进行SVD分解求得的逆矩阵,值都为-nan(ind)

当对一个复数矩阵进行SVD分解求逆矩阵时,由于复数的数学性质,可能会出现值为NaN的情况。这通常是因为矩阵的奇异值存在极小值,导致在求逆矩阵时出现除以0的情况。 为了避免这种情况,可以通过设置一个奇异值的阈值来排除极小值,从而避免出现NaN的情况。 以下是一个修改后的代码示例: ```c++ #include <Eigen/Dense> using namespace Eigen; int main() { MatrixXcd A = MatrixXcd::Random(3, 3); JacobiSVD<MatrixXcd> svd(A, ComputeFullU | ComputeFullV); double eps = std::numeric_limits<double>::epsilon(); MatrixXcd A_inv = svd.matrixV() * (svd.singularValues().array().abs() > eps).select(svd.singularValues().array().inverse(), 0).matrix().asDiagonal() * svd.matrixU().adjoint(); return 0; } ``` 在上面的代码中,我们设置了一个阈值`eps`,使用std::numeric_limits<double>::epsilon()函数来获取`double`类型的最小值。然后对奇异值进行了修改,如果奇异值小于阈值,则将其设置为0,否则将其取倒数。这样可以避免出现NaN的情况。 注意,这种情况通常发生在矩阵存在较小奇异值的情况下,因此在实际应用中,需要根据矩阵的特性来选择合适的阈值。

相关推荐

#include<stdio.h> #include<math.h> #include<stdlib.h> #define dx 100 struct bb { int m; int n; int hl[dx][dx]; int jk[dx][dx]; }; double det(struct bb *A, int n); double algebraic_cofactor(struct bb *A, struct bb *B, int row, int col); void adjoint(struct bb *A, struct bb *B); void inverse(struct bb *A,double inv[][dx],int N); int main() { struct bb A; int m,n; printf("输入几行几列:\n"); scanf("%d %d",&m,&n); A.m = m; A.n = n; printf("请输入矩阵:\n"); for(int i = 0; i < A.m; i++) { for(int j = 0; j < A.n; j++) { scanf("%d", &A.hl[i][j]); } } double inv[dx][dx]; int N = A.m; // Assuming square matrix // 计算逆矩阵 inverse(&A, inv, N); // 输出结果 printf("逆矩阵:\n"); for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { printf("%.2f ", A.hl[i][j]); } printf("\n"); } return 0; } double det(struct bb *A, int n) { double sum=0; if(n==1) { return A->hl[0][0]; } else if(n==2) { return A->hl[0][0]*A->hl[1][1]-A->hl[0][1]*A->hl[1][0]; } int i,j,k; struct bb *mybb = (struct bb *)malloc(sizeof(struct bb)); for(k=0;k<n;k++) { double b[dx][dx]; for(i=1;i<n;i++) { for(j=0;j<n;j++) { if(j<k) { b[i-1][j]=A->hl[i][j]; } else if(j>k) { b[i-1][j-1]=A->hl[i][j]; } } } mybb->m = n - 1; mybb->n = n - 1; for(i=0;i<mybb->m;i++) { for(j=0;j<mybb->n;j++) { mybb->hl[i][j] = b[i][j]; } } double detb=det(mybb,n-1); sum+=A->hl[0][k]*pow(-1,k)*detb; } free(mybb); return sum; } double algebraic_cofactor(struct bb *A, struct bb B, int row, int col) { int i,j,m=0,n=0,M=A->m; double sign; if((row+col)%2==0) { sign=1; } else { sign=-1; } for(i=0;i<M;i++) { if(i!=row) { for(j=0;j<M;j++) { if(j!=col) { B->jk[m][n]=A->hl[i][j]; n++; } } m++; n=0; } } double detb=det(B,M-1); return signdetb; } void adjoint(struct bb *A, struct bb *B) { int i,j,M=A->m; for(i=0;i<M;i++) { for(j=0;j<M;j++) { B->hl[j][i]=algebraic_cofactor(A,B,i,j); //注意这里是 hl[j][i] 而不是 hl[i][j] } } } void inverse(struct bb *A,double inv[][dx],int N) { // 构造伴随矩阵 struct bb B; B.m = N; B.n = N; adjoint(A, &B); // 计算行列式的值 double dets=det(A,N); // 判断行列式是否为零 if(dets == 0) { printf("该矩阵不可逆!\n"); return; } // 计算逆矩阵 for(int i=0;i<N;i++) { for(int j=0;j<N;j++) { inv[i][j] = B.hl[i][j] / dets; } } }修改这个代码找出错误并改正

最新推荐

recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

Memcached 1.2.4 版本源码包

粤嵌gec6818开发板项目Memcached是一款高效分布式内存缓存解决方案,专为加速动态应用程序和减轻数据库压力而设计。它诞生于Danga Interactive,旨在增强LiveJournal.com的性能。面对该网站每秒数千次的动态页面请求和超过七百万的用户群,Memcached成功实现了数据库负载的显著减少,优化了资源利用,并确保了更快的数据访问速度。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

软件项目开发全过程文档资料.zip

软件项目开发全过程文档资料.zip
recommend-type

Java基础上机题-分类整理版.doc

Java基础上机题-分类整理版
recommend-type

Java-JDBC学习教程-由浅入深.doc

Java-JDBC学习教程-由浅入深
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。