map_image = Image.open("map_-122.3734_47.5557_-122.0729_47.6793.png") draw = ImageDraw.Draw(map_image)
时间: 2023-06-12 16:05:31 浏览: 138
这段代码是使用Python中的Pillow库打开一张地图图片,并在图片上绘制一些内容。具体来说:
- 第一行代码通过`Image.open()`方法打开了一张名为`map_-122.3734_47.5557_-122.0729_47.6793.png`的图片,该图片应该是一张地图图片。
- 第二行代码通过`ImageDraw.Draw()`创建了一个`Draw`对象,该对象可以用来在图片上绘制各种图形和文本。
- 接下来可以使用`Draw`对象的各种方法在图片上绘制各种内容,例如绘制线条、矩形、圆形、文本等等。
这段代码中只有前两行,因此没有看到具体的绘制内容。
相关问题
import torch from model import AOD import torchvision.transforms as transforms from PIL import Image import torchvision import cv2 def test_on_img_(state_dict_path, img_cv2): state_dict = torch.load(state_dict_path, map_location=torch.device('cpu'))['state_dict'] model = AOD() model.load_state_dict(state_dict) img = Image.fromarray(img_cv2) img = transforms.ToTensor()(img) img = img.unsqueeze(0) result_img = model(img) return result_img def test_on_img(state_dict_path, image): state_dict = torch.load(state_dict_path, map_location=torch.device('cpu'))['state_dict'] model = AOD() model.load_state_dict(state_dict) img = Image.open(image) img = transforms.ToTensor()(img) img = img.unsqueeze(0) result_img = model(img) return result_img if __name__=='__main__': img_name = 'river' suffix = '.png' result = test_on_img('Dehaze_save/epoch11.pth', 'testbench/'+img_name+suffix) torchvision.utils.save_image(result, 'testbench/'+img_name+'_result'+suffix) 解释这段代码意思
这段代码主要实现了一个使用预训练的 AOD 模型去除图像中雾气的功能。具体来说,代码中定义了两个函数 `test_on_img_()` 和 `test_on_img()`,分别用于对输入的 OpenCV 格式图像和图像文件进行去雾操作。除此之外,代码还定义了一个 `if __name__=='__main__':` 的语句块,用于测试 `test_on_img()` 函数在指定输入图像下的去雾效果。
在 `test_on_img_()` 和 `test_on_img()` 函数中,首先通过 `torch.load()` 函数加载预训练模型的参数,然后使用 AOD 类实例化模型,并将预训练的参数加载到模型中。接着,代码将输入的图像转换为 PyTorch 中的 Tensor 数据,并且在第 0 维上增加一个维度。最后,代码将 Tensor 数据输入到模型中,得到去雾后的结果,并将结果返回。
在 `if __name__=='__main__':` 语句块中,代码首先定义了一个输入图像的名称 `img_name` 和后缀 `suffix`,然后调用 `test_on_img()` 函数对指定图像进行去雾操作,并将去雾后的结果保存到指定文件中。
import torch import torchvision.transforms as transforms import numpy as np from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.filters import sobel from skimage.color import rgb2gray from PIL import Image # 超像素数量 num_segments = 100 # 加载图像 image = Image.open('1.png') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 转换为灰度图像 gray_img = rgb2gray(img_np) # 使用 SLIC 超像素分割算法 segments = slic(img_np, n_segments=num_segments, compactness=10, sigma=1) # 绘制超像素边界线 edge_img = mark_boundaries(img_np, segments) # 转换为灰度图像 gray_edge_img = rgb2gray(edge_img) # 使用 Canny 边缘检测算法 edges = sobel(gray_edge_img) edge_map = edges > np.mean(edges) # 绘制超像素范围的线 line_map = np.zeros_like(gray_img) for i in range(num_segments): line_map[segments == i] = edge_map[segments == i].max() # 将线绘制到图像上 line_img = np.zeros_like(img_np) line_img[:, :, 0] = line_map line_img[:, :, 1] = line_map line_img[:, :, 2] = line_map result_img = img_np * (1 - line_img) + line_img * np.array([1, 0, 0]) # 显示结果 result_img = (result_img * 255).astype(np.uint8) result_img = Image.fromarray(result_img) result_img.show(),上述代码出现问题:ValueError: zero-size array to reduction operation maximum which has no identity,如何修改
这个错误通常出现在尝试对一个大小为0的数组进行最大值计算时。根据你的代码,这可能是由于在使用SLIC算法时,图像大小太小而导致的。你可以尝试使用更大的图像或者减少SLIC算法中的超像素数量来解决这个问题。同时,你也可以在代码中添加一些条件判断,确保不会出现空数组的情况。比如在计算超像素范围线时,可以先检查超像素的数量是否为0,如果是就跳过。另外,你也可以尝试使用其他的超像素分割算法,比如Quickshift或者Felzenszwalb等。
阅读全文