为什么如果n阶矩阵A乘以n阶矩阵B不为零矩阵,则A的秩加B的秩小于等于n

时间: 2023-12-01 19:25:46 浏览: 136
DOCX

实对称矩阵的每行元素绝对值之和,则特征值小于11

假设 $A$ 和 $B$ 是 $n$ 阶矩阵,且 $A \cdot B \neq \mathbf{0}$,其中 $\mathbf{0}$ 表示全零矩阵。 根据矩阵乘法的定义,$A \cdot B$ 中的每个元素都是 $A$ 的一行与 $B$ 的一列的乘积之和。因此,$A \cdot B$ 的任何一行都是 $A$ 的行向量与 $B$ 的列向量的线性组合。 如果 $A$ 的秩为 $r_A$,则 $A$ 中必须存在 $r_A$ 个线性无关的行向量(或列向量)。由于 $A \cdot B$ 的任何一行都可以表示为 $A$ 的行向量与 $B$ 的列向量的线性组合,因此 $A \cdot B$ 的行向量最多只能包含 $r_A$ 个线性无关的向量。 另一方面,如果 $B$ 的秩为 $r_B$,则 $B$ 中必须存在 $r_B$ 个线性无关的列向量(或行向量)。由于 $A \cdot B$ 的任何一列都可以表示为 $A$ 的行向量与 $B$ 的列向量的线性组合,因此 $A \cdot B$ 的列向量最多只能包含 $r_B$ 个线性无关的向量。 由于 $A \cdot B$ 是一个 $n \times n$ 的矩阵,因此它最多包含 $n$ 个线性无关的行向量和 $n$ 个线性无关的列向量。因此,$r_A + r_B$ 必须不大于 $n$,即 $r_A + r_B \leq n$。
阅读全文

相关推荐

n = 3; rho = 2.7 * 1e3;%这个变量表示材料的密度。 S = 0.1 * 0.01;%这个变量表示横截面积。 E = 7.2 * 1e10;%这个变量表示杨氏模量。 I = 0.1^3*0.01/12;% (i/4)^2 * A;惯性矩 L = 1; % 1/4;%单元的长度dt = 0.01; % 定义时间步长dt t = 0:dt:6; % 定义时间序列t,从0到6,步长为dt。 N = length(t); % 计算时间序列t的长度Nf = zeros(3*n,1); %初始化外部控制输入f为一个3n维的零向量。 f(end-2:end) = [0,5,5]; % 将f的最后三个元素设置为[0,5,5]。 f = f*sin(3 * pi*t);%将f乘以sin(3 * pi*t),得到一个随时间变化的外部控制输入。w = normrnd(0,1e-8,6*n,1);%生成一个6n维的高斯白噪声w,均值为0,标准差为1e-8。 v = normrnd(0,5e-8,3*n,1);%生成一个3n维的高斯白噪声v,均值为0,标准差为5e-8。H = [eye(3*n),zeros(3*n)];%定义观测矩阵H,它是一个3n乘6n的矩阵,左边是一个3n阶单位矩阵,右边是一个全零矩阵。X = x00; %初始化X为x00。X表示估计值,与真实值x不同。 Ms = 200*eye(6*n); %初始化Ms为200倍的6n阶单位矩阵。Ms表示过程噪声协方差矩阵Q的估计值 Pb = 200*eye(3*n); %初始化Pb为200倍的3n阶单位矩阵。Pb表示测量噪声协方差矩阵R的估计值 F_jian(:,1) = [f(:,1)]; %初始化F_jian的第一列为f的第一列。F_jian表示外部控制输入f的估计值 m = 2 * 6 * n; %定义变量m,表示采样点数。 gamma = 0.7; %定义变量gamma,表示遗忘因子。以上为现有已知量,给出代码,分段输出

最新推荐

recommend-type

基于高斯消去法解稠密满秩矩阵-openmp实现

在稠密满秩矩阵的情况下,A 的每一行和每一列都有非零元素,因此所有元素都参与了计算。 在高斯消去法中,首先进行主元选择过程。在第 I 步,我们会找到第 I 列中从第 I 行到第 N 行(即当前行以下的行)中绝对值...
recommend-type

使用matlab高斯消去法、列主元高斯消去法计算n阶线性方程组

在给定的MATLAB代码中,首先设定n的值,然后创建一个n阶的系数矩阵A(这里是一个对角占优的矩阵)和对应的常数项向量b。接着,通过`inv(A)*b`计算了直接的解,但这是不推荐的,因为对于大的n,直接求逆可能非常不...
recommend-type

矩阵论复习知识PDF.pdf

- 2) 常数乘以矩阵的迹等于常数与矩阵迹的乘积:\( tr(cA) = c \cdot tr(A) \) - 3) 如果 \( c \) 是常数,则 \( tr(cA) = tr(Ac) \) - 4) 矩阵与其共轭转置的迹相等:\( tr(A^T) = tr(A) \),对于复数矩阵,\( ...
recommend-type

MATRIX ANALYSIS @ HITSZ矩阵分析

线性方程组可以用矩阵形式表示为Ax=b,其中A是一个m×n的系数矩阵,x是n维列向量代表未知数,b是m维列向量代表常数项。 矩阵乘法在解决线性方程组中起到关键作用。左乘矩阵可以实现对线性系统的加减、缩放和重新...
recommend-type

逆矩阵的求法行列式初等变换

根据定理2.5的推论,如果一个矩阵A可以通过一系列初等矩阵的乘积得到,那么A是可逆的。具体来说,如果A可逆,那么A可以通过初等行变换化为单位矩阵。这为我们求解逆矩阵提供了一条路径:构造分块矩阵 \( (A|E) \),...
recommend-type

探索数据转换实验平台在设备装置中的应用

资源摘要信息:"一种数据转换实验平台" 数据转换实验平台是一种专门用于实验和研究数据转换技术的设备装置,它能够帮助研究者或技术人员在模拟或实际的工作环境中测试和优化数据转换过程。数据转换是指将数据从一种格式、类型或系统转换为另一种,这个过程在信息科技领域中极其重要,尤其是在涉及不同系统集成、数据迁移、数据备份与恢复、以及数据分析等场景中。 在深入探讨一种数据转换实验平台之前,有必要先了解数据转换的基本概念。数据转换通常包括以下几个方面: 1. 数据格式转换:将数据从一种格式转换为另一种,比如将文档从PDF格式转换为Word格式,或者将音频文件从MP3格式转换为WAV格式。 2. 数据类型转换:涉及数据类型的改变,例如将字符串转换为整数,或者将日期时间格式从一种标准转换为另一种。 3. 系统间数据转换:在不同的计算机系统或软件平台之间进行数据交换时,往往需要将数据从一个系统的数据结构转换为另一个系统的数据结构。 4. 数据编码转换:涉及到数据的字符编码或编码格式的变化,例如从UTF-8编码转换为GBK编码。 针对这些不同的转换需求,一种数据转换实验平台应具备以下特点和功能: 1. 支持多种数据格式:实验平台应支持广泛的数据格式,包括但不限于文本、图像、音频、视频、数据库文件等。 2. 可配置的转换规则:用户可以根据需要定义和修改数据转换的规则,包括正则表达式、映射表、函数脚本等。 3. 高度兼容性:平台需要兼容不同的操作系统和硬件平台,确保数据转换的可行性。 4. 实时监控与日志记录:实验平台应提供实时数据转换监控界面,并记录转换过程中的关键信息,便于调试和分析。 5. 测试与验证机制:提供数据校验工具,确保转换后的数据完整性和准确性。 6. 用户友好界面:为了方便非专业人员使用,平台应提供简洁直观的操作界面,降低使用门槛。 7. 强大的扩展性:平台设计时应考虑到未来可能的技术更新或格式标准变更,需要具备良好的可扩展性。 具体到所给文件中的"一种数据转换实验平台.pdf",它应该是一份详细描述该实验平台的设计理念、架构、实现方法、功能特性以及使用案例等内容的文档。文档中可能会包含以下几个方面的详细信息: - 实验平台的设计背景与目的:解释为什么需要这样一个数据转换实验平台,以及它预期解决的问题。 - 系统架构和技术选型:介绍实验平台的系统架构设计,包括软件架构、硬件配置以及所用技术栈。 - 核心功能与工作流程:详细说明平台的核心功能模块,以及数据转换的工作流程。 - 使用案例与操作手册:提供实际使用场景下的案例分析,以及用户如何操作该平台的步骤说明。 - 测试结果与效能分析:展示平台在实际运行中的测试结果,包括性能测试、稳定性测试等,并进行效能分析。 - 问题解决方案与未来展望:讨论在开发和使用过程中遇到的问题及其解决方案,以及对未来技术发展趋势的展望。 通过这份文档,开发者、测试工程师以及研究人员可以获得对数据转换实验平台的深入理解和实用指导,这对于产品的设计、开发和应用都具有重要价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

ggflags包的国际化问题:多语言标签处理与显示的权威指南

![ggflags包的国际化问题:多语言标签处理与显示的权威指南](https://www.verbolabs.com/wp-content/uploads/2022/11/Benefits-of-Software-Localization-1024x576.png) # 1. ggflags包介绍及国际化问题概述 在当今多元化的互联网世界中,提供一个多语言的应用界面已经成为了国际化软件开发的基础。ggflags包作为Go语言中处理多语言标签的热门工具,不仅简化了国际化流程,还提高了软件的可扩展性和维护性。本章将介绍ggflags包的基础知识,并概述国际化问题的背景与重要性。 ## 1.1
recommend-type

如何使用MATLAB实现电力系统潮流计算中的节点导纳矩阵构建和阻抗矩阵转换,并解释这两种矩阵在潮流计算中的作用和差异?

在电力系统的潮流计算中,MATLAB提供了一个强大的平台来构建节点导纳矩阵和进行阻抗矩阵转换,这对于确保计算的准确性和效率至关重要。首先,节点导纳矩阵是电力系统潮流计算的基础,它表示系统中所有节点之间的电气关系。在MATLAB中,可以通过定义各支路的导纳值并将它们组合成矩阵来构建节点导纳矩阵。具体操作包括建立各节点的自导纳和互导纳,以及考虑变压器分接头和线路的参数等因素。 参考资源链接:[电力系统潮流计算:MATLAB程序设计解析](https://wenku.csdn.net/doc/89x0jbvyav?spm=1055.2569.3001.10343) 接下来,阻抗矩阵转换是
recommend-type

使用git-log-to-tikz.py将Git日志转换为TIKZ图形

资源摘要信息:"git-log-to-tikz.py 是一个使用 Python 编写的脚本工具,它能够从 Git 版本控制系统中的存储库生成用于 TeX 文档的 TIkZ 图。TIkZ 是一个用于在 LaTeX 文档中创建图形的包,它是 pgf(portable graphics format)库的前端,广泛用于创建高质量的矢量图形,尤其适合绘制流程图、树状图、网络图等。 此脚本基于 Michael Hauspie 的原始作品进行了更新和重写。它利用了 Jinja2 模板引擎来处理模板逻辑,这使得脚本更加灵活,易于对输出的 TeX 代码进行个性化定制。通过使用 Jinja2,脚本可以接受参数,并根据参数输出不同的图形样式。 在使用该脚本时,用户可以通过命令行参数指定要分析的 Git 分支。脚本会从当前 Git 存储库中提取所指定分支的提交历史,并将其转换为一个TIkZ图形。默认情况下,脚本会将每个提交作为 TIkZ 的一个节点绘制,同时显示提交间的父子关系,形成一个树状结构。 描述中提到的命令行示例: ```bash git-log-to-tikz.py master feature-branch > repository-snapshot.tex ``` 这个命令会将 master 分支和 feature-branch 分支的提交日志状态输出到名为 'repository-snapshot.tex' 的文件中。输出的 TeX 代码使用TIkZ包定义了一个 tikzpicture 环境,该环境可以被 LaTeX 编译器处理,并在最终生成的文档中渲染出相应的图形。在这个例子中,master 分支被用作主分支,所有回溯到版本库根的提交都会包含在生成的图形中,而并行分支上的提交则会根据它们的时间顺序交错显示。 脚本还提供了一个可选参数 `--maketest`,通过该参数可以执行额外的测试流程,但具体的使用方法和效果在描述中没有详细说明。一般情况下,使用这个参数是为了验证脚本的功能或对脚本进行测试。 此外,Makefile 中提供了调用此脚本的示例,说明了如何在自动化构建过程中集成该脚本,以便于快速生成所需的 TeX 图形文件。 此脚本的更新版本允许用户通过少量参数对生成的图形进行控制,包括但不限于图形的大小、颜色、标签等。这为用户提供了更高的自定义空间,以适应不同的文档需求和审美标准。 在使用 git-log-to-tikz.py 脚本时,用户需要具备一定的 Python 编程知识,以理解和操作 Jinja2 模板,并且需要熟悉 Git 和 TIkZ 的基本使用方法。对于那些不熟悉命令行操作的用户,可能需要一些基础的学习来熟练掌握该脚本的使用。 最后,虽然文件名称列表中只列出了 'git-log-to-tikz.py-master' 这一个文件,但根据描述,该脚本应能支持检查任意数量的分支,并且在输出的 TeX 文件中使用 `tikzset` 宏来轻松地重新设置图形的样式。这表明脚本具有较好的扩展性和灵活性。"