已知三次Bezier曲线的控制多边形的4个控制点P0(3,3),P1(9,6),P2(21,9),P3(30,0) ,利用三次Bezier曲线的定义求该三次Bezier曲线在t=0,t=1/3,t=2/3,t=1 的坐标值。
时间: 2024-05-23 09:09:22 浏览: 141
好的,让我帮您计算一下。根据三次Bezier曲线的定义,曲线上点的坐标可以表示为:
B(t) = (1-t)^3 * P0 + 3t(1-t)^2 * P1 + 3t^2(1-t) * P2 + t^3 * P3
其中 t 为参数,取值范围为 [0,1]。
将给定的四个控制点带入公式,得到该三次Bezier曲线的控制方程为:
B(t) = (-t^3 + 3t^2 - 3t + 1) * P0 + (3t^3 - 6t^2 + 3t) * P1 + (-3t^3 + 3t^2) * P2 + (t^3) * P3
代入 t=0,t=1/3,t=2/3,t=1 分别计算得到曲线上的点坐标为:
t=0,B(0) = P0 = (3, 3)
t=1/3,B(1/3) = (120/27, 174/27) ≈ (4.444, 6.444)
t=2/3,B(2/3) = (360/27, 126/27) ≈ (13.333, 4.667)
t=1,B(1) = P3 = (30, 0)
以上就是所求的答案,希望能够帮到您。
相关问题
: 已知三次Bezier曲线的控制多边形的4个控制点P0(3,3),P1(9,6),P2(21,9),P3(30,0) ,利用三次Bezier曲线的定义求该三次Bezier曲线在t=0,t=1/3,t=2/3,t=1 的坐标值。
首先,根据三次Bezier曲线的定义公式,在给定的控制点下,该曲线可以表示为:
B(t)=(1-t)^3P0+3t(1-t)^2P1+3t^2(1-t)P2+t^3P3
将t=0,1/3,2/3和1代入上面的公式,就可以计算出对应的坐标值:
当t=0时,B(0)=(1-0)^3P0+3×0(1-0)^2P1+3×0^2(1-0)P2+0^3P3=3, 3
当t=1/3时,B(1/3)=(1-1/3)^3P0+3×1/3(1-1/3)^2P1+3×(1/3)^2(1-1/3)P2+(1/3)^3P3=9, 6
当t=2/3时,B(2/3)=(1-2/3)^3P0+3×2/3(1-2/3)^2P1+3×(2/3)^2(1-2/3)P2+(2/3)^3P3=21, 9
当t=1时,B(1)=(1-1)^3P0+3×1(1-1)^2P1+3×1^2(1-1)P2+1^3P3=30, 0
注意,以上计算结果为二维坐标值。
已知P0[0,0],P1[1,1],P2[2,1],P3[4,4]是一个三次bezier曲线特征多边形顶点,求出此bezier曲线的参数方程。
三次Bezier曲线的参数方程如下:
$$
P(t)=(1-t)^3P_0+3t(1-t)^2P_1+3t^2(1-t)P_2+t^3P_3
$$
将题目中给出的点代入参数方程中,得到此Bezier曲线的参数方程为:
$$
P(t)=(1-t)^3[0,0]+3t(1-t)^2[1,1]+3t^2(1-t)[2,1]+t^3[4,4]
$$
展开后得到:
$$
P(t)=\left[\begin{array}{c}
(1-t)^3\cdot0+3t(1-t)^2\cdot1+3t^2(1-t)\cdot2+t^3\cdot4\\
(1-t)^3\cdot0+3t(1-t)^2\cdot1+3t^2(1-t)\cdot1+t^3\cdot4
\end{array}\right]
$$
化简后即为:
$$
P(t)=\left[\begin{array}{c}
6t^3-15t^2+10t\\
6t^3-9t^2+3t
\end{array}\right]
$$
阅读全文