Term Weight

时间: 2024-08-16 13:09:32 浏览: 29
Term weight是信息检索和自然语言处理中的一种技术,它用于量化文本中词语的重要性,以便更好地理解和评估文档的相关性。主要目的是为了赋予某些词更高的权重,以反映它们在文档中出现的频率、位置以及上下文的重要性。常见的术语权重算法有: 1. **TF-IDF (Term Frequency-Inverse Document Frequency)**[^4]: TF(Term Frequency)计算一个词在文档中出现的次数,IDF(Inverse Document Frequency)考虑了一个词在整个语料库中的普遍程度,降低常见词的权重。公式通常是 `TF * IDF`。 ```markdown TF(word, document) = (word's frequency in document) / (total words in document) IDF(word) = log_e(Total documents / (documents containing word)) ``` 2. **BM25 (Best Match 25)**[^5]: 是一种改进的TF-IDF方法,考虑了文档长度和查询长度,以及单词与文档之间的距离等因素,更适用于长文档。 3. **PageRank**[^6]: 原本是Google用来确定网页排名的方法,但概念上也可应用于文本分析,通过链式加权的方式计算词语的重要度。 4. **LDA (Latent Dirichlet Allocation)**[^7]: 主题模型中,每个主题中的词都会有一个相对重要的权重,表示该词在描述这个主题时的重要性。 这些权重方法有助于搜索引擎优化、关键词提取、文本分类和聚类等任务。在实际应用中,选择哪种权重取决于具体场景的需求和预期结果。

相关推荐

优化以下代码,提高情感指标值,并做出解释,# 载入否定词表 notdict = pd.read_csv("not.csv") # 处理否定修饰词 data_posneg['amend_weight'] = data_posneg['weight'] # 构造新列,作为经过否定词修正后的情感值 data_posneg['id'] = np.arange(0, len(data_posneg)) only_inclination = data_posneg.dropna() # 只保留有情感值的词语 only_inclination.index = np.arange(0, len(only_inclination)) index = only_inclination['id'] for i in np.arange(0, len(only_inclination)): review = data_posneg[data_posneg['index_content'] == only_inclination['index_content'][i]] # 提取第i个情感词所在的评论 review.index = np.arange(0, len(review)) affective = only_inclination['index_word'][i] # 第i个情感值在该文档的位置 if affective == 1: ne = sum([i in notdict['term'] for i in review['word'][affective - 1]]) if ne == 1: data_posneg['amend_weight'][index[i]] = -\ data_posneg['weight'][index[i]] elif affective > 1: ne = sum([i in notdict['term'] for i in review['word'][[affective - 1, affective - 2]]]) if ne == 1: data_posneg['amend_weight'][index[i]] = -\ data_posneg['weight'][index[i]] # 更新只保留情感值的数据 only_inclination = only_inclination.dropna() # 计算每条评论的情感值 emotional_value = only_inclination.groupby(['index_content'], as_index=False)['amend_weight'].sum() # 去除情感值为0的评论 emotional_value = emotional_value[emotional_value['amend_weight'] != 0],emotional_value['a_type'] = '' emotional_value['a_type'][emotional_value['amend_weight'] > 0] = 'pos' emotional_value['a_type'][emotional_value['amend_weight'] < 0] = 'neg'

代码time_start = time.time() results = list() iterations = 2001 lr = 1e-2 model = func_critic_model(input_shape=(None, train_img.shape[1]), act_func='relu') loss_func = tf.keras.losses.MeanSquaredError() alg = "gd" # alg = "gd" for kk in range(iterations): with tf.GradientTape() as tape: predict_label = model(train_img) loss_val = loss_func(predict_label, train_lbl) grads = tape.gradient(loss_val, model.trainable_variables) overall_grad = tf.concat([tf.reshape(grad, -1) for grad in grads], 0) overall_model = tf.concat([tf.reshape(weight, -1) for weight in model.weights], 0) overall_grad = overall_grad + 0.001 * overall_model ## adding a regularization term results.append(loss_val.numpy()) if alg == 'gd': overall_model -= lr * overall_grad ### gradient descent elif alg == 'gdn': ## gradient descent with nestrov's momentum overall_vv_new = overall_model - lr * overall_grad overall_model = (1 + gamma) * oerall_vv_new - gamma * overall_vv overall_vv = overall_new pass model_start = 0 for idx, weight in enumerate(model.weights): model_end = model_start + tf.size(weight) weight.assign(tf.reshape()) for grad, ww in zip(grads, model.weights): ww.assign(ww - lr * grad) if kk % 100 == 0: print(f"Iter: {kk}, loss: {loss_val:.3f}, Duration: {time.time() - time_start:.3f} sec...") input_shape = train_img.shape[1] - 1 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(input_shape,)), tf.keras.layers.Dense(30, activation="relu"), tf.keras.layers.Dense(20, activation="relu"), tf.keras.layers.Dense(1) ]) n_epochs = 20 batch_size = 100 learning_rate = 0.01 momentum = 0.9 sgd_optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=momentum) model.compile(loss="mean_squared_error", optimizer=sgd_optimizer) history = model.fit(train_img, train_lbl, epochs=n_epochs, batch_size=batch_size, validation_data=(test_img, test_lbl)) nag_optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=momentum, nesterov=True) model.compile(loss="mean_squared_error", optimizer=nag_optimizer) history = model.fit(train_img, train_lbl, epochs=n_epochs, batch_size=batch_size, validation_data=(test_img, test_lbl))运行后报错TypeError: Missing required positional argument,如何改正

CREATE DEFINER=wantbpm_uat@10.%.%.% PROCEDURE wantbpm_uat.P_MATERIAL() proc_label:BEGIN DECLARE _st INT(10) DEFAULT UNIX_TIMESTAMP(); DECLARE _cnts1 INT ; select count(*) into _cnts1 from ods.dm_d_material; if _cnts1<1 then SELECT CONCAT('; P_MATERIAL出错,ods数据量异常 ', (UNIX_TIMESTAMP()-_st) ) AS INFO; LEAVE proc_label; -- 跳出存储过程 end if; truncate table wantbpm_uat.MATERIAL; insert into wantbpm_uat.MATERIAL SELECT DIM_MATERIAL_ID, REC_CREATE_DATE, MATERIAL, CONVERT(MATL_NAME, USING utf8), MATL_SPECS, MATL_TYPE, MATL_TYPE_NAME, MATL_GROUP, MATL_GROUP_NAME, PRODUCT_GROUP, PRODUCT_GROUP_NAME, BASIC_UNIT, BASIC_UNIT_NAME, MIN_UNIT, MIN_UNIT_NAME, EXT_MATL_GROUP, EXT_MATL_GROUP_NAME, GROSS_WEIGHT, NET_WEIGHT, SALES_PRICE, MATL_HIER, MATL_HIER1, MATL_HIER1_NAME, MATL_HIER2, MATL_HIER2_NAME, MATL_HIER3, MATL_HIER3_NAME, MATL_HIER4, MATL_HIER4_NAME, MATL_HIER5, MATL_HIER5_NAME, TERM_CATEG, TERM_CATEG_NAME, MATL_COMB, MATL_COMB_NAME, MATL_SCALE, MATL_SCALE_NAME, FUNCTION_CATEG, FUNCTION_CATEG_NAME, MATL_MAIN_CATEG, GENERAL_CATEG_UNIT, GENERAL_CATEG_UNIT_NAME, MATL_SCALE_FI, MATL_NEW, BRAND, BRAND_NAME, REC_CREATOR, REC_UPDATE_DATE, REC_UPDATER, MATL_OLD, MATL_CATEG, MATL_BOX_SIZE, ERP_MATL_PROPERTY1, ERP_MATL_PROPERTY2, ERP_MATL_PROPERTY3, ERP_MATL_PROPERTY4, ERP_MATL_PROPERTY5, ERP_MATL_PROPERTY6, ERP_MATL_PROPERTY7, CDP_MATL_FLAG1, CDP_MATL_FLAG2, CDP_MATL_FLAG3, TAX_RATE, INSERT_DATETIME, UPDATE_DATETIME FROM ods.dm_d_material; SELECT CONCAT( ' P_MATERIAL END - ', (UNIX_TIMESTAMP()-_st) ) AS INFO; END

class SelfAttention(Layer): def __init__(self, output_dim, **kwargs): self.output_dim = output_dim super(SelfAttention, self).__init__(**kwargs) def build(self, input_shape): self.W = self.add_weight(name='W', shape=(input_shape[-1], self.output_dim), initializer='uniform', trainable=True) self.b = self.add_weight(name='b', shape=(self.output_dim,), initializer='zeros', trainable=True) self.u = self.add_weight(name='u', shape=(self.output_dim, 1), initializer='uniform', trainable=True) super(SelfAttention, self).build(input_shape) def call(self, x): uit = K.tanh(K.bias_add(K.dot(x, self.W), self.b)) ait = K.softmax(K.squeeze(K.dot(uit, self.u), axis=-1)) weighted_input = x * K.expand_dims(ait) return K.sum(weighted_input, axis=1) def compute_output_shape(self, input_shape): return (input_shape[0], self.output_dim) def LSTNetAttention(trainX1,trainX2,trainY,config): # 输入数据 input1 = Input(shape=(trainX1.shape[1], trainX1.shape[2])) # 定义输入层 # 定义attention权重 # Add LSTM layer lstm1 = LSTM(64, return_sequences=True)(input1) # Add Self-Attention layer Self_Attention1 = SelfAttention(64)(lstm1) # 应用注意力机制到第二个输入 # Input2: long-term time series with period #input2 = Input(shape=(trainX2.shape[1], trainX2.shape[2],)) input2 = Input(shape=(trainX2.shape[1], trainX2.shape[2])) # Add LSTM layer lstm2 = LSTM(64, return_sequences=True)(input2) # Add Self-Attention layer Self_Attention2 = SelfAttention(64)(lstm2) merged_output = concatenate([Self_Attention1,Self_Attention2]) lstm_out = LSTM(64, return_sequences=False)(merged_output) # 加入LSTM层 lstm_out = Dense(32, activation='relu')(lstm_out) res = Dense(trainY.shape[1])(lstm_out)

最新推荐

recommend-type

各种函数声明和定义模块

各种函数声明和定义模块
recommend-type

C++标准程序库:权威指南

"《C++标准程式库》是一本关于C++标准程式库的经典书籍,由Nicolai M. Josuttis撰写,并由侯捷和孟岩翻译。这本书是C++程序员的自学教材和参考工具,详细介绍了C++ Standard Library的各种组件和功能。" 在C++编程中,标准程式库(C++ Standard Library)是一个至关重要的部分,它提供了一系列预先定义的类和函数,使开发者能够高效地编写代码。C++标准程式库包含了大量模板类和函数,如容器(containers)、迭代器(iterators)、算法(algorithms)和函数对象(function objects),以及I/O流(I/O streams)和异常处理等。 1. 容器(Containers): - 标准模板库中的容器包括向量(vector)、列表(list)、映射(map)、集合(set)、无序映射(unordered_map)和无序集合(unordered_set)等。这些容器提供了动态存储数据的能力,并且提供了多种操作,如插入、删除、查找和遍历元素。 2. 迭代器(Iterators): - 迭代器是访问容器内元素的一种抽象接口,类似于指针,但具有更丰富的操作。它们可以用来遍历容器的元素,进行读写操作,或者调用算法。 3. 算法(Algorithms): - C++标准程式库提供了一组强大的算法,如排序(sort)、查找(find)、复制(copy)、合并(merge)等,可以应用于各种容器,极大地提高了代码的可重用性和效率。 4. 函数对象(Function Objects): - 又称为仿函数(functors),它们是具有operator()方法的对象,可以用作函数调用。函数对象常用于算法中,例如比较操作或转换操作。 5. I/O流(I/O Streams): - 标准程式库提供了输入/输出流的类,如iostream,允许程序与标准输入/输出设备(如键盘和显示器)以及其他文件进行交互。例如,cin和cout分别用于从标准输入读取和向标准输出写入。 6. 异常处理(Exception Handling): - C++支持异常处理机制,通过throw和catch关键字,可以在遇到错误时抛出异常,然后在适当的地方捕获并处理异常,保证了程序的健壮性。 7. 其他组件: - 还包括智能指针(smart pointers)、内存管理(memory management)、数值计算(numerical computations)和本地化(localization)等功能。 《C++标准程式库》这本书详细讲解了这些内容,并提供了丰富的实例和注解,帮助读者深入理解并熟练使用C++标准程式库。无论是初学者还是经验丰富的开发者,都能从中受益匪浅,提升对C++编程的掌握程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

怎样使scanf函数和printf在同一行表示

在C语言中,`scanf` 和 `printf` 通常是分开使用的,因为它们的功能不同,一个负责从标准输入读取数据,另一个负责向标准输出显示信息。然而,如果你想要在一行代码中完成读取和打印,可以创建一个临时变量存储 `scanf` 的结果,并立即传递给 `printf`。但这种做法并不常见,因为它违反了代码的清晰性和可读性原则。 下面是一个简单的示例,展示了如何在一个表达式中使用 `scanf` 和 `printf`,但这并不是推荐的做法: ```c #include <stdio.h> int main() { int num; printf("请输入一个整数: ");
recommend-type

Java解惑:奇数判断误区与改进方法

Java是一种广泛使用的高级编程语言,以其面向对象的设计理念和平台无关性著称。在本文档中,主要关注的是Java中的基础知识和解惑,特别是关于Java编程语言的一些核心概念和陷阱。 首先,文档提到的“表达式谜题”涉及到Java中的取余运算符(%)。在Java中,取余运算符用于计算两个数相除的余数。例如,`i % 2` 表达式用于检查一个整数`i`是否为奇数。然而,这里的误导在于,Java对`%`操作符的处理方式并不像常规数学那样,对于负数的奇偶性判断存在问题。由于Java的`%`操作符返回的是与左操作数符号相同的余数,当`i`为负奇数时,`i % 2`会得到-1而非1,导致`isOdd`方法错误地返回`false`。 为解决这个问题,文档建议修改`isOdd`方法,使其正确处理负数情况,如这样: ```java public static boolean isOdd(int i) { return i % 2 != 0; // 将1替换为0,改变比较条件 } ``` 或者使用位操作符AND(&)来实现,因为`i & 1`在二进制表示中,如果`i`的最后一位是1,则结果为非零,表明`i`是奇数: ```java public static boolean isOdd(int i) { return (i & 1) != 0; // 使用位操作符更简洁 } ``` 这些例子强调了在编写Java代码时,尤其是在处理数学运算和边界条件时,理解运算符的底层行为至关重要,尤其是在性能关键场景下,选择正确的算法和操作符能避免潜在的问题。 此外,文档还提到了另一个谜题,暗示了开发者在遇到类似问题时需要进行细致的测试,确保代码在各种输入情况下都能正确工作,包括负数、零和正数。这不仅有助于发现潜在的bug,也能提高代码的健壮性和可靠性。 这个文档旨在帮助Java学习者和开发者理解Java语言的一些基本特性,特别是关于取余运算符的行为和如何处理边缘情况,以及在性能敏感的场景下优化算法选择。通过解决这些问题,读者可以更好地掌握Java编程,并避免常见误区。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

The Application of Autocorrelation Function in Economics: Economic Cycle Analysis and Forecasting Modeling

# Application of Autocorrelation Function in Economics: Analysis and Forecasting Models for Economic Cycles ## 1. Theoretical Foundations of Autocorrelation Function The Autocorrelation Function (ACF) is a statistical tool used to measure the correlation between data points in time series data tha
recommend-type

ethernet functionality not enabled socket error#10065 No route to host.

When you encounter an Ethernet functionality not enabled error with a socket error code 10065 "No route to host" while attempting to send or receive data over a network, it typically indicates two issues: 1. **Ethernet Functionality Not Enabled**: This error might be related to your system's networ
recommend-type

C++编程必读:20种设计模式详解与实战

《设计模式:精华的集合》是一本专为C++程序员打造的宝典,旨在提升类的设计技巧。作者通过精心编排,将19种常见的设计模式逐一剖析,无论你是初级的编码新手,还是经验丰富的高级开发者,甚至是系统分析师,都能在本书中找到所需的知识。 1. **策略模式** (StrategyPattern):介绍如何在不同情况下选择并应用不同的算法或行为,提供了一种行为的可替换性,有助于代码的灵活性和扩展性。 2. **代理模式** (ProxyPattern):探讨如何创建一个对象的“代理”来控制对原始对象的访问,常用于远程对象调用、安全控制和性能优化。 3. **单例模式** (SingletonPattern):确保在整个应用程序中只有一个实例存在,通常用于共享资源管理,避免重复创建。 4. **多例模式** (MultitonPattern):扩展了单例模式,允许特定条件下创建多个实例,每个实例代表一种类型。 5. **工厂方法模式** (FactoryMethodPattern):提供一个创建对象的接口,但让子类决定实例化哪个具体类,有助于封装和解耦。 6. **抽象工厂模式** (AbstractFactoryPattern):创建一系列相关或相互依赖的对象,而无需指定它们的具体类,适用于产品家族的创建。 7. **门面模式** (FacadePattern):将复杂的系统简化,为客户端提供统一的访问接口,隐藏内部实现的复杂性。 8. **适配器模式** (AdapterPattern):使一个接口与另一个接口匹配,让不兼容的对象协同工作,便于复用和扩展。 9. **模板方法模式** (TemplateMethodPattern):定义一个算法的骨架,而将一些步骤延迟到子类中实现,保持代码结构一致性。 10. **建造者模式** (BuilderPattern):将构建过程与表示分离,使得构建过程可配置,方便扩展和修改。 11. **桥梁模式** (BridgePattern):将抽象和实现分离,允许它们独立变化,提高系统的灵活性。 12. **命令模式** (CommandPattern):封装请求,使其能推迟执行,支持命令的可撤销和历史记录。 13. **装饰器模式** (DecoratorPattern):动态地给一个对象添加新的功能,不影响其他对象,增加代码的可重用性和扩展性。 14. **迭代器模式** (IteratorPattern):提供一种顺序访问聚合对象元素的方式,而不暴露其内部表示。 15. **组合模式** (CompositePattern):将多个对象视为单个对象的一部分,以便统一处理,适用于树形结构。 16. **观察者模式** (ObserverPattern):当一个对象的状态改变时,通知所有依赖它的对象,维护对象间的松散耦合。 17. **访问者模式** (VisitorPattern):为对象提供一个统一的访问接口,使它们可以接受任何类型的访问操作,支持代码的结构化和模块化。 18. **状态模式** (StatePattern):根据对象的内部状态改变其行为,实现行为的灵活切换。 19. **责任链模式** (ChainofResponsibilityPattern):将请求的传递过程分解为一系列的处理阶段,直到找到能够处理该请求的处理者。 此外,书中还涵盖了原型模式、中介者模式、解释器模式、亨元模式、备忘录模式以及模式间的对比分析,最后部分介绍了混编模式和版本更新记录,确保读者能够全面理解和应用这些设计模式。通过学习这本书,无论是基础设计还是高级架构,都能提升你的编程技能和项目的整体质量。