X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))]) X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))]) X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))]) X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])

时间: 2023-07-14 16:12:41 浏览: 43
这段代码是在将训练数据集、验证数据集、测试数据集和开发数据集的特征矩阵中添加一列全为1的偏置列,以便进行线性回归模型的训练。其中,np.hstack()函数是将两个矩阵按水平方向拼接起来,np.ones()函数生成一个全为1的矩阵,其形状为(X.shape[0],1)。因此,代码中的np.ones((X_train.shape[0], 1))就是一个形状为(X_train.shape[0],1)的全为1的矩阵,通过np.hstack()函数与X_train拼接在一起,形成了一个新的特征矩阵。同理,对其余的数据集也执行了相同的操作。
相关问题

b_train=np.ones((X_train.shape[0],1)) print(b_train.shape) print(type(b_train)) X_train_addones=np.hstack((b_train,X_train))

好的,我理解了。对于这个问题,b_train是一个由1构成的数组,形状为(X_train.shape[0],1),X_train是一个数据集。np.ones()是一个numpy库函数,用于创建全由1组成的数组。type()是一个Python内置函数,用于返回一个对象的类型。np.hstack()是一个numpy库函数,用于水平(沿列)连接两个数组。那么,X_train_addones是由b_train和X_train水平拼接而成的数组。这个数组的形状为(X_train.shape[0], X_train.shape[1]+1),也就是比X_train多了一列1。

y = np.concatenate([np.ones(len(X_processed)*len(X_processed[0])), np.zeros(len(X_masked)*len(X_masked[0]))]) print(y.shape) X_features = [] for x_list in X_processed: for x in x_list: x_feature = ft.hog(x, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False) X_features.append(x_feature) for x_list in X_masked: for x in x_list: x_feature = ft.hog(x, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False) X_features.append(x_feature) # write code to split the dataset into train-set and test-set X_train, X_test, y_train, y_test = model_selection.train_test_split(X_features, y, test_size=0.2, random_state=42, shuffle=True) # write code to train and test the SVM classifier as the facemask presence detector clf = svm.SVC() clf.fit(X_train, y_train) predicted = clf.predict(X_test) print(predicted) print(y_test) test_score = clf.score(X_test, y_test) print(test_score),请逐行解释以上代码,并指出其问题

```python y = np.concatenate([np.ones(len(X_processed)*len(X_processed[0])), np.zeros(len(X_masked)*len(X_masked[0]))]) print(y.shape) ``` 这段代码将 `X_processed` 和 `X_masked` 中的样本数量计算后,创建了一个标签数组 `y`,其中 `X_processed` 对应的标签为1,`X_masked` 对应的标签为0。 ```python X_features = [] for x_list in X_processed: for x in x_list: x_feature = ft.hog(x, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False) X_features.append(x_feature) for x_list in X_masked: for x in x_list: x_feature = ft.hog(x, orientations=8, pixels_per_cell=(10, 10), cells_per_block=(1, 1), visualize=False) X_features.append(x_feature) ``` 这段代码使用 `skimage.feature.hog` 函数从每个图像中提取 HOG 特征,并将这些特征存储在列表 `X_features` 中。 ```python X_train, X_test, y_train, y_test = model_selection.train_test_split(X_features, y, test_size=0.2, random_state=42, shuffle=True) ``` 这段代码使用 `sklearn.model_selection.train_test_split` 函数将数据集划分为训练集和测试集,其中训练集占80%,测试集占20%。 ```python clf = svm.SVC() clf.fit(X_train, y_train) ``` 这段代码创建了一个 `SVC`(支持向量机分类器)对象 `clf`,并使用训练集 `X_train` 和标签 `y_train` 对其进行训练。 ```python predicted = clf.predict(X_test) print(predicted) print(y_test) ``` 这段代码使用训练好的分类器 `clf` 对测试集 `X_test` 进行预测,并打印预测结果和真实标签 `y_test`。 ```python test_score = clf.score(X_test, y_test) print(test_score) ``` 这段代码计算分类器在测试集上的准确率,并打印出来。 问题: - 代码中缺少了模块的导入语句,例如 `import numpy as np`、`import skimage.feature as ft`、`from sklearn import model_selection, svm`。 - 代码中使用了 `ft.hog()` 函数来提取 HOG 特征,但没有导入 `skimage.feature.hog` 模块。 - 在划分数据集时,应该使用相同的随机种子(random_state)来保证每次划分的结果一致。 - 如果 `X_features` 和 `y` 的维度不匹配,可能会导致训练和预测出错。需要确保提取的特征和标签数量一致。 - 缺少评估分类器性能的相关指标,例如混淆矩阵、精确率和召回率等。可以使用 `sklearn.metrics` 模块来计算这些指标。

相关推荐

import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # 加载 iris 数据 iris = load_iris() # 只选取两个特征和两个类别进行二分类 X = iris.data[(iris.target==0)|(iris.target==1), :2] y = iris.target[(iris.target==0)|(iris.target==1)] # 将标签转化为 0 和 1 y[y==0] = -1 # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 实现逻辑回归算法 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, verbose=False): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.verbose = verbose def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) # 初始化参数 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): # 计算梯度 z = np.dot(X, self.theta) h = self.__sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size # 更新参数 self.theta -= self.lr * gradient # 打印损失函数 if self.verbose and i % 10000 == 0: z = np.dot(X, self.theta) h = self.__sigmoid(z) loss = self.__loss(h, y) print(f"Loss: {loss} \t") def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold # 训练模型 model = LogisticRegressio

class Client(object): def __init__(self, conf, public_key, weights, data_x, data_y): self.conf = conf self.public_key = public_key self.local_model = models.LR_Model(public_key=self.public_key, w=weights, encrypted=True) #print(type(self.local_model.encrypt_weights)) self.data_x = data_x self.data_y = data_y #print(self.data_x.shape, self.data_y.shape) def local_train(self, weights): original_w = weights self.local_model.set_encrypt_weights(weights) neg_one = self.public_key.encrypt(-1) for e in range(self.conf["local_epochs"]): print("start epoch ", e) #if e > 0 and e%2 == 0: # print("re encrypt") # self.local_model.encrypt_weights = Server.re_encrypt(self.local_model.encrypt_weights) idx = np.arange(self.data_x.shape[0]) batch_idx = np.random.choice(idx, self.conf['batch_size'], replace=False) #print(batch_idx) x = self.data_x[batch_idx] x = np.concatenate((x, np.ones((x.shape[0], 1))), axis=1) y = self.data_y[batch_idx].reshape((-1, 1)) #print((0.25 * x.dot(self.local_model.encrypt_weights) + 0.5 * y.transpose() * neg_one).shape) #print(x.transpose().shape) #assert(False) batch_encrypted_grad = x.transpose() * (0.25 * x.dot(self.local_model.encrypt_weights) + 0.5 * y.transpose() * neg_one) encrypted_grad = batch_encrypted_grad.sum(axis=1) / y.shape[0] for j in range(len(self.local_model.encrypt_weights)): self.local_model.encrypt_weights[j] -= self.conf["lr"] * encrypted_grad[j] weight_accumulators = [] #print(models.decrypt_vector(Server.private_key, weights)) for j in range(len(self.local_model.encrypt_weights)): weight_accumulators.append(self.local_model.encrypt_weights[j] - original_w[j]) return weight_accumulators

#倒入相关库文件 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import accuracy_score from sklearn.metrics import recall_score from sklearn.metrics import precision_score from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split #首先我们先观察一下数据的总体描述 data = pd.read_csv('data.csv') data.describe(include='all') #观察数据的任意五行 data.sample(5) sns.countplot(data["target"]) plt.show() #target一共9个类别。由于是字符型,定义一个函数将target的类别标签转为index表示,方便后面计算交叉熵 def target2idx(targets): target_idx = [] target_labels = ['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6', 'Class_7', 'Class_8', 'Class_9','Class_10'] for target in targets: target_idx.append(target_labels.index(target)) return target_idx #向量转化函数(提供参考,自行选择是否使用) def convert_to_vectors(c): m = len(c) k = np.max(c) + 1 y = np.zeros(m * k).reshape(m,k) for i in range(m): y[i][c[i]] = 1 return y #特征处理函数(提供参考,自行选择是否使用) def process_features(X): scaler = MinMaxScaler(feature_range=(0,1)) X = scaler.fit_transform(1.0*X) m, n = X.shape X = np.c_[np.ones((m, 1)), X] return X #数据获取样例,可自行处理 X = np.array(data)[:,1:-1].astype(float) c = target2idx(data['target']) y = convert_to_vectors(c) #划分训练集和测试集比例在0.1-0.9之间 X_train, X_test, y_train, y_test, c_train, c_test = train_test_split(X, y, c, random_state = 0, test_size = 0.2) #模型训练及预测 #计算指标,本指标使用加权的方式计算多分类问题,accuracy和recall相等,可将其原因写入报告 accuracy = accuracy_score(c_test, c_pred) precision = precision_score(c_test, c_pred,average = 'weighted') recall = recall_score(c_test, c_pred,average = 'weighted') f1 = f1_score(c_test, c_pred,average = 'weighted') print("accuracy = {}".format(accuracy)) print("precision = {}".format(precision)) print("recall = {}".format(recall)) print("f1 = {}".format(f1))补全代码

#target一共9个类别。由于是字符型,定义一个函数将target的类别标签转为index表示,方便后面计算交叉熵 def target2idx(targets): target_idx = [] target_labels = ['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6', 'Class_7', 'Class_8', 'Class_9','Class_10'] for target in targets: target_idx.append(target_labels.index(target)) return target_idx #向量转化函数(提供参考,自行选择是否使用) def convert_to_vectors(c): m = len(c) k = np.max(c) + 1 y = np.zeros(m * k).reshape(m,k) for i in range(m): y[i][c[i]] = 1 return y #特征处理函数(提供参考,自行选择是否使用) def process_features(X): scaler = MinMaxScaler(feature_range=(0,1)) X = scaler.fit_transform(1.0*X) m, n = X.shape X = np.c_[np.ones((m, 1)), X] return X数据获取样例,可自行处理 X = np.array(data)[:,1:-1].astype(float) c = target2idx(data['target']) y = convert_to_vectors(c) #划分训练集和测试集比例在0.1-0.9之间 X_train, X_test, y_train, y_test, c_train, c_test = train_test_split(X, y, c, random_state = 0, test_size = 0.2)#模型训练及预测#计算指标,本指标使用加权的方式计算多分类问题,accuracy和recall相等,可将其原因写入报告 accuracy = accuracy_score(c_test, c_pred) precision = precision_score(c_test, c_pred,average = 'weighted') recall = recall_score(c_test, c_pred,average = 'weighted') f1 = f1_score(c_test, c_pred,average = 'weighted') print("accuracy = {}".format(accuracy)) print("precision = {}".format(precision)) print("recall = {}".format(recall)) print("f1 = {}".format(f1))补全代码

def train(notes, chords, generator, discriminator, gan, loss_fn, generator_optimizer, discriminator_optimizer): num_batches = notes.shape[0] // BATCH_SIZE for epoch in range(NUM_EPOCHS): for batch in range(num_batches): # 训练判别器 for _ in range(1): # 生成随机的噪声 noise = np.random.normal(0, 1, size=(BATCH_SIZE, LATENT_DIM)) # 随机选择一个真实的样本 idx = np.random.randint(0, notes.shape[0], size=BATCH_SIZE) real_notes, real_chords = notes[idx], chords[idx] # 生成假的样本 fake_notes = generator(noise) # 计算判别器的损失函数 real_loss = loss_fn(tf.ones((BATCH_SIZE, 1)), discriminator([real_notes, real_chords])) fake_loss = loss_fn(tf.zeros((BATCH_SIZE, 1)), discriminator([fake_notes, chords])) total_loss = real_loss + fake_loss # 计算判别器的梯度并更新参数 grads = tf.gradients(total_loss, discriminator.trainable_variables) discriminator_optimizer.apply_gradients(zip(grads, discriminator.trainable_variables))) # 训练生成器 for _ in range(1): # 生成随机的噪声 noise = np.random.normal(0, 1, size=(BATCH_SIZE, LATENT_DIM)) # 计算生成器的损失函数 fake_notes = generator(noise) fake_loss = loss_fn(tf.ones((BATCH_SIZE, 1)), discriminator([fake_notes, chords])) # 计算生成器的梯度并更新参数 grads = tf.gradients(fake_loss, generator.trainable_variables) generator_optimizer.apply_gradients(zip(grads, generator.trainable_variables))) # 打印损失函数和精度 print('Epoch {}, Batch {}/{}: Loss={:.4f}'.format(epoch+1, batch+1, num_batches, total_loss)) # 保存模型 if (epoch+1) % 10 == 0: generator.save('generator.h5') discriminator.save('discriminator.h5') gan.save('gan.h5')

最新推荐

recommend-type

关于__Federico Milano 的电力系统分析工具箱.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

def ObjFun(x,y,beta): # 目标函数 """ Logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: loss value """ n = x.shape[0] p = x.shape[1] pred = 1 / (1 + np.exp(-np.dot(x, beta))) pred = np.clip(pred, 1e-15, 1 - 1e-15) # 将预测值限制在一个很小的区间内 ObjVal = -np.sum(y * np.log(pred) + (1 - y) * np.log(1 - pred)) / n return ObjVal

好的,根据上面的目标函数,我们可以推导出其对应的梯度向量函数,如下所示: def gradient(x, y, beta): """ Compute gradient of the logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: gradient vector """ n = x.shape[0] pred = 1 /
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的最佳实践:模型训练、超参数调优与部署优化,打造高性能目标检测系统

![:YOLO目标检测算法的最佳实践:模型训练、超参数调优与部署优化,打造高性能目标检测系统](https://img-blog.csdnimg.cn/20201024153508415.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1NNRjA1MDQ=,size_16,color_FFFFFF,t_70) # 1. YOLO目标检测算法概述 **1.1 YOLO算法简介** YOLO(You Only Look Once)是一种
recommend-type

pecl-memcache-php7 下载

你可以通过以下步骤来下载 pecl-memcache-php7: 1. 打开终端或命令行工具。 2. 输入以下命令:`git clone https://github.com/websupport-sk/pecl-memcache.git` 3. 进入下载的目录:`cd pecl-memcache` 4. 切换到 php7 分支:`git checkout php7` 5. 构建和安装扩展:`phpize && ./configure && make && sudo make install` 注意:在执行第5步之前,你需要确保已经安装了 PHP 和相应的开发工具。
recommend-type

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。