sinx的立方加cosx的立方的倒数的积分
时间: 2024-03-04 12:53:00 浏览: 61
这是一道比较复杂的积分题目,需要进行一些变形和换元才能求解。首先,我们可以将sinx的立方加cosx的立方展开,得到:
sin^3(x) + cos^3(x) = (sin(x) + cos(x))(sin^2(x) - sin(x)cos(x) + cos^2(x))
然后,我们将sin(x) + cos(x)作为新的变量t,进行换元,即:
t = sin(x) + cos(x)
dt/dx = cos(x) - sin(x)
那么,我们可以将sin^2(x) - sin(x)cos(x) + cos^2(x)用t表示,即:
sin^2(x) - sin(x)cos(x) + cos^2(x) = t^2 - 2t + 2
因此,原式可以变为:
∫[sin(x), cos(x)] (sin^3(x) + cos^3(x))/(sin^3(x) + cos^3(x)) dx
= ∫[sin(x)+cos(x)] (t^2-2t+2)/(t^3-3t+2) dt
= ∫[sin(x)+cos(x)] [(t-1)^2+1]/[(t-1)(t-2)(t+1)] dt
接下来,我们可以进行部分分式分解,得到:
[(t-1)^2+1]/[(t-1)(t-2)(t+1)] = A/(t-1) + B/(t-2) + C/(t+1)
其中,A、B、C是待定系数。将上式两边通分,得到:
(t-1)^2+1 = A(t-2)(t+1) + B(t-1)(t+1) + C(t-1)(t-2)
令t=1,可以消去A和B,得到:
2 = 2C
因此,C=1。将C代入上式,得到:
(t-1)^2+1 = A(t-2)(t+1) + B(t-1)(t+1) + (t-1)(t-2)
化简后,得到:
(t-1)^2+1 = (A+B)(t^2-t-2) + (3-A)t + 2A
比较系数,得到:
A+B = 1
3-A = 0
2A = 1
解得:
A = 1/2,B = 1/2,C = 1
因此,原式可以变为:
∫[sin(x)+cos(x)] (1/2)/(t-1) + (1/2)/(t-2) + 1/(t+1) dt
接下来,我们可以分别对每个部分进行积分,得到:
∫[sin(x)+cos(x)] (1/2)/(t-1) + (1/2)/(t-2) + 1/(t+1) dt
= (1/2)ln|t-1| + (1/2)ln|t-2| + ln|t+1| + C
= (1/2)ln|sin(x)+cos(x)-1| + (1/2)ln|sin(x)+cos(x)-2| + ln|sin(x)+cos(x)+1| + C'
其中,C'为常数。这就是原式的解。
阅读全文