torch.sum(images, dim=(0, 2, 3))

时间: 2023-09-18 19:10:21 浏览: 37
这行代码使用 PyTorch 框架中的 `sum()` 函数对输入的 `images` 进行求和计算。`dim=(0, 2, 3)` 参数指定了需要对哪些维度进行求和计算。具体来说,这里的 `0` 表示对 batch 维度求和,也就是将所有样本的求和结果相加;而 `2` 和 `3` 则表示对图片的宽和高维度求和,也就是将图片中所有像素的求和结果相加。 因此,这行代码的作用是计算 `images` 中所有样本的所有像素的和。其返回值是一个一维张量(向量),长度为 `images` 的 channel 数量(即 `images` 的第一维大小),每个元素是对应 channel 的所有样本的像素和。
相关问题

解释下下面这段代码 if self.adv_loss == 'wgan-gp': # 计算梯度惩罚 alpha = torch.rand(real_images.size(0), 1, 1, 1).cuda().expand_as(real_images) interpolated = Variable(alpha * real_images.data + (1 - alpha) * fake_images.data, requires_grad=True) out, _, _ = self.D(interpolated) grad = torch.autograd.grad(outputs=out, inputs=interpolated, grad_outputs=torch.ones(out.size()).cuda(), retain_graph=True, create_graph=True, only_inputs=True)[0] grad = grad.view(grad.size(0), -1) grad_l2norm = torch.sqrt(torch.sum(grad ** 2, dim=1)) d_loss_gp = torch.mean((grad_l2norm - 1) ** 2) # Backward + Optimize d_loss = self.lambda_gp * d_loss_gp self.reset_grad() d_loss.backward() self.d_optimizer.step()

这段代码是实现了 WGAN-GP(Wasserstein GAN with Gradient Penalty)算法的训练过程中的梯度惩罚步骤。具体来说,它的作用是在训练过程中对判别器的梯度进行惩罚,以防止判别器的梯度爆炸或消失,从而提高模型的稳定性和训练效果。 具体实现过程如下: - 首先,生成一个大小与真实样本和虚假样本相同的随机向量 alpha,并将其扩展为与真实样本和虚假样本相同的大小。然后,计算 alpha * real_images.data + (1 - alpha) * fake_images.data,得到一个插值图像 interpolated。 - 接着,将 interpolated 输入判别器 D 中,并计算其输出 out。 - 然后,使用 torch.autograd.grad() 函数计算 out 对 interpolated 的梯度 grad。 - 将 grad 展开成 2D 的向量,并计算其 L2 范数 grad_l2norm。 - 最后,计算梯度惩罚项 d_loss_gp,即 (grad_l2norm - 1) ** 2 的均值。并更新判别器的损失函数 d_loss。 其中,lambda_gp 是梯度惩罚项的权重。在训练过程中,通过反向传播和优化器来更新判别器的参数,从而达到训练的目的。

if (epoch + 1) % val_interval == 0: model.eval() with torch.no_grad(): y_pred = torch.tensor([], dtype=torch.float32, device=device) y = torch.tensor([], dtype=torch.long, device=device) for val_data in val_loader: val_images, val_labels = ( val_data[0].to(device), val_data[1].to(device), ) y_pred = torch.cat([y_pred, model(val_images)], dim=0) y = torch.cat([y, val_labels], dim=0) y_onehot = [y_trans(i) for i in decollate_batch(y, detach=False)] y_pred_act = [y_pred_trans(i) for i in decollate_batch(y_pred)] auc_metric(y_pred_act, y_onehot) result = auc_metric.aggregate() auc_metric.reset() del y_pred_act, y_onehot metric_values.append(result) acc_value = torch.eq(y_pred.argmax(dim=1), y) acc_metric = acc_value.sum().item() / len(acc_value) if result > best_metric: best_metric = result best_metric_epoch = epoch + 1 torch.save(model.state_dict(), os.path.join(root_dir, "best_metric_model.pth")) print("saved new best metric model") print( f"current epoch: {epoch + 1} current AUC: {result:.4f}" f" current accuracy: {acc_metric:.4f}" f" best AUC: {best_metric:.4f}" f" at epoch: {best_metric_epoch}" )

这段代码是在训练过程中的一个epoch结束后进行的验证步骤。在每个val_interval的倍数的epoch结束后,模型会进入评估模式(model.eval()),然后用验证集(val_loader)进行验证。 首先,创建了两个空的tensor,y_pred和y,用于存储预测结果和真实标签。 然后,对于每个val_data,将验证图像(val_images)和标签(val_labels)移动到设备上。 接下来,使用模型(model)对验证图像进行预测,并使用torch.cat将每个batch的预测结果和真实标签拼接在一起,以便计算整个验证集上的指标。 然后,对于y_onehot和y_pred_act,分别对其进行转换操作,具体实现可能在其他地方。 然后,使用auc_metric计算AUC指标,并将结果添加到metric_values列表中。 接着,计算准确率指标(acc_metric),首先使用argmax函数找到每个预测结果的最大值所在的索引,然后使用torch.eq函数将预测结果与真实标签进行比较,得到一个布尔值的tensor,最后将预测正确的个数求和并除以总样本数来计算准确率。 如果当前AUC指标比之前的最佳指标(best_metric)要好,则更新best_metric和best_metric_epoch,并保存模型参数到best_metric_model.pth文件中。 最后,打印当前epoch的信息,包括当前epoch的AUC指标、准确率、最佳AUC指标及其所在的epoch。

相关推荐

详细解释代码import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader # 图像预处理 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # 加载数据集 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=0) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = DataLoader(testset, batch_size=128, shuffle=False, num_workers=0) # 构建模型 class RNNModel(nn.Module): def init(self): super(RNNModel, self).init() self.rnn = nn.RNN(input_size=3072, hidden_size=512, num_layers=2, batch_first=True) self.fc = nn.Linear(512, 10) def forward(self, x): # 将输入数据reshape成(batch_size, seq_len, feature_dim) x = x.view(-1, 3072, 1).transpose(1, 2) x, _ = self.rnn(x) x = x[:, -1, :] x = self.fc(x) return x net = RNNModel() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.001) # 训练模型 loss_list = [] acc_list = [] for epoch in range(30): # 多批次循环 running_loss = 0.0 correct = 0 total = 0 for i, data in enumerate(trainloader, 0): # 获取输入 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 前向传播,反向传播,优化 outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 打印统计信息 running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * correct / total acc_list.append(acc) loss_list.append(running_loss / len(trainloader)) print('[%d] loss: %.3f, acc: %.3f' % (epoch + 1, running_loss / len(trainloader), acc)) print('Finished Training') torch.save(net.state_dict(), 'rnn1.pt') # 绘制loss变化曲线和准确率变化曲线 import matplotlib.pyplot as plt fig, axs = plt.subplots(2, 1, figsize=(10, 10)) axs[0].plot(loss_list) axs[0].set_title("Training Loss") axs[0].set_xlabel("Epoch") axs[0].set_ylabel("Loss") axs[1].plot(acc_list) axs[1].set_title("Training Accuracy") axs[1].set_xlabel("Epoch") axs[1].set_ylabel("Accuracy") plt.show() # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))

帮我把这段代码从tensorflow框架改成pytorch框架: import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

def train(): # 训练 print('Start training ===========================================>') best_epo = -1 max_pck = -1 cur_lr = learning_rate print('Learning Rate: {}'.format(learning_rate)) for epoch in range(1, epochs + 1): print('Epoch[{}/{}] ==============>'.format(epoch, epochs)) model.train() train_loss = [] for step, (img, label, img_name, w, h) in enumerate(train_loader): label = torch.stack([label] * 6, dim=1) # bz * 6 * 21 * 46 * 46 if cuda: img = img.cuda() label = label.cuda() optimizer.zero_grad() pred_maps = model(img) # (FloatTensor.cuda) size:(bz,6,21,46,46) loss = sum_mse_loss(pred_maps, label) # total loss loss.backward() optimizer.step() if step % 100 == 0: print('STEP: {} LOSS {}'.format(step, loss.item())) loss_final = sum_mse_loss(pred_maps[:, -1, ...].cpu(), label[:, -1, ...].cpu()) train_loss.append(loss_final) # save sample image **** save_images(label[:, -1, ...].cpu(), pred_maps[:, -1, ...].cpu(), epoch, img_name, save_dir) # eval model after one epoch eval_loss, cur_pck = eval(epoch, mode='valid') print('EPOCH {} Valid PCK {}'.format(epoch, cur_pck)) print('EPOCH {} TRAIN_LOSS {}'.format(epoch, sum(train_loss)/len(train_loss))) print('EPOCH {} VALID_LOSS {}'.format(epoch, eval_loss)) if cur_pck > max_pck: torch.save(model.state_dict(), os.path.join(save_dir, 'best_model.pth')) max_pck = cur_pck best_epo = epoch print('Current Best EPOCH is : {}\n**************\n'.format(best_epo)) torch.save(model.state_dict(), os.path.join(save_dir, 'final_epoch.pth')) if epoch % lr_decay_epoch == 0: cur_lr /= 2 update_lr(optimizer, cur_lr) print('Train Done!') print('Best epoch is {}'.format(best_epo))

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

从键盘输入一段英文字符串,其中包含多个字母‘h',请编写程序利用正则表达式,将英文字符串中的’h'全部改为‘H’

好的,我可以帮您解决这个问题。 您可以使用 Python 编写一个程序来实现这个功能。具体步骤如下: 1. 首先导入 re 模块,这个模块是 Python 中用于处理正则表达式的模块。 2. 然后定义一个包含英文字符串的变量,例如: text = "This is a string containing multiple h's." 3. 接下来,使用 re.sub() 方法来进行替换操作。re.sub() 方法的第一个参数是正则表达式,第二个参数是替换的字符或字符串,第三个参数是被替换的字符串。在这个例子里,我们需要将所有的小写字母 h 替换成大写字母 H,所以正则表达式可以写成
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

MySQL 什么情况下不会使用到索引

MySQL 不会使用索引的情况主要包括: 1. 查询的数据量太少,全表扫描比使用索引更快; 2. 使用了函数或表达式对索引字段进行运算; 3. 对索引字段进行了类型转换; 4. 索引列上出现了函数或者运算符; 5. 查询语句中使用了 OR 连接多个条件; 6. 查询条件中有 NULL 值; 7. 数据表的数据量过于庞大,索引失去了优势。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩