使用差分进化算法解决旅行商问题给出具体完整的matlab代码
时间: 2024-10-16 09:11:48 浏览: 56
差分进化(Differential Evolution,DE)是一种优化算法,常用于求解复杂的非线性优化问题,如旅行商问题(Traveling Salesman Problem, TSP)。TSP的目标是找到访问一组城市并返回起点的最短路径。下面是一个简化的DE算法用于TSP的MATLAB代码示例:
```Matlab
% 导入所需工具箱
addpath('GlobalOptimization Toolbox'); % 如果尚未安装,需要先下载
function tsp_solution = de_tsp(city_coordinates, pop_size, iter_num)
% 初始化参数
n_cities = size(city_coordinates, 1);
lower_bound = ones(1, n_cities) * 0;
upper_bound = ones(1, n_cities) * n_cities - 1; % 考虑环形路径
crossover_rate = 0.8;
scaling_factor = 0.5;
% 初始化种群
population = randi([lower_bound, upper_bound], pop_size, n_cities);
fitness = zeros(pop_size, 1);
% 计算初始适应度
for i = 1:pop_size
tsp_path = [population(i, :), population(i, 1)]; % 添加回起点
fitness(i) = tsp_distance(tsp_path, city_coordinates);
end
% DE核心循环
for iter = 1:iter_num
% 筛选出三个随机个体
idxs = randperm(pop_size, 3);
a, b, c = population(idxs(1)), population(idxs(2)), population(idxs(3));
% 差异向量
v = a + scaling_factor * (b - c);
% 遵守边界条件
v(v < lower_bound) = lower_bound(v < lower_bound);
v(v > upper_bound) = upper_bound(v > upper_bound);
% 交叉和突变操作
mutant = crossover(v, population(idxs(4)));
if rand() < crossover_rate
trial = mutation(mutant, city_coordinates);
else
trial = mutant;
end
% 更新适应度并接受新解
if fitness(trial) < fitness(idxs(4))
population(idxs(4)) = trial;
end
end
% 找到最优解
min_fitness_idx = find(fitness == min(fitness));
tsp_solution = population(min_fitness_idx(1), :); % 去除第一个元素就是起点
end
% 旅行商路径距离计算函数
function dist = tsp_distance(path, coordinates)
dist = sum(sqrt(diff(path).^2 + diff(coordinates(:, path)).^2));
end
```
这个代码中,`city_coordinates`表示城市坐标矩阵,`pop_size`是种群大小,`iter_num`是迭代次数。注意这只是一个简化版本,实际应用可能需要对算法进行更多调整和优化。
阅读全文