KeyError Traceback (most recent call last) Cell In[6], line 10 8 history1 = model1.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test,y_test)) 9 # 再训练model2 ---> 10 history2 = model2.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test,y_test)) File ~\anaconda3\lib\site-packages\keras\src\utils\traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs) 67 filtered_tb = _process_traceback_frames(e.traceback) 68 # To get the full stack trace, call: 69 # tf.debugging.disable_traceback_filtering() ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb File ~\AppData\Local\Temp_autograph_generated_filejh6by608.py:15, in outer_factory.<locals>.inner_factory.<locals>.tf__train_function(iterator) 13 try: 14 do_return = True ---> 15 retval = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) 16 except: 17 do_return = False KeyError: in user code: 'The optimizer cannot recognize variable dense_1/kernel:0. This usually means you are trying to call the optimizer to update different parts of the model separately. Please call `optimizer.build(variables)` with the full list of trainable variables before the training loop or use legacy optimizer `tf.keras.optimizers.legacy.SGD.
时间: 2024-04-17 13:29:35 浏览: 263
这个错误通常是由于在训练不同的模型时,优化器无法识别变量导致的。解决此问题的一个方法是在训练循环之前,使用 `optimizer.build(variables)` 方法传递完整的可训练变量列表,或者使用旧版优化器 `tf.keras.optimizers.legacy.SGD`。这样做将帮助优化器识别并更新所有需要更新的变量。
在你的代码中,你需要确保在训练 `model2` 之前,已经调用了 `optimizer.build(variables)` 或者使用了旧版优化器。这样可以避免出现这个错误。
相关问题
>>> model = tf.keras.models.Sequential([ ... tf.keras.layers.Dense(64, activation='relu'), ... tf.keras.layers.Dense(10, activation='softmax') ... ]) >>> tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="./logs") >>> model.fit(x_train, y_train, epochs=10, callbacks=[tensorboard_callback]) Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'x_train' is not defined
这个错误提示是因为在运行这段代码之前没有定义变量 x_train。x_train 和 y_train 应该是训练模型所需的输入数据和对应的标签。你需要先定义这两个变量并将它们传递给 model.fit() 方法。例如:
```
import tensorflow as tf
# 定义 x_train 和 y_train
x_train = ...
y_train = ...
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="./logs")
model.fit(x_train, y_train, epochs=10, callbacks=[tensorboard_callback])
```
你需要将 `...` 替换为你自己的数据和标签。
import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense data = pd.read_csv('车辆:274序:4结果数据.csv') x = data[['车头间距', '原车道前车速度']].values y = data['本车速度'].values train_size = int(len(x) * 0.7) test_size = len(x) - train_size x_train, x_test = x[0:train_size,:], x[train_size:len(x),:] y_train, y_test = y[0:train_size], y[train_size:len(y)] from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) model = Sequential() model.add(LSTM(50, input_shape=(2, 1))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') history = model.fit(x_train.reshape(-1, 2, 1), y_train, epochs=100, batch_size=32, validation_data=(x_test.reshape(-1, 2, 1), y_test)) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper right') plt.show() train_predict = model.predict(x_train.reshape(-1, 2, 1)) test_predict = model.predict(x_test.reshape(-1, 2, 1)) train_predict = scaler.inverse_transform(train_predict) train_predict = train_predict.reshape(-1, 1) y_train = scaler.inverse_transform([y_train]) test_predict = scaler.inverse_transform(test_predict) y_test = scaler.inverse_transform([y_test]) plt.plot(y_train[0], label='train') plt.plot(train_predict[:,0], label='train predict') plt.plot(y_test[0], label='test') plt.plot(test_predict[:,0], label='test predict') plt.legend() plt.show()报错Traceback (most recent call last): File "C:\Users\马斌\Desktop\NGSIM_data_processing\80s\lstmtest.py", line 42, in <module> train_predict = scaler.inverse_transform(train_predict) File "D:\python\python3.9.5\pythonProject\venv\lib\site-packages\sklearn\preprocessing\_data.py", line 541, in inverse_transform X -= self.min_ ValueError: non-broadcastable output operand with shape (611,1) doesn't match the broadcast shape (611,2)
这个错误提示是因为在使用 `scaler.inverse_transform()` 函数时,输入的 `train_predict` 和 `y_train` 的维度不匹配,导致无法进行运算。具体来说,`train_predict` 是一个形状为 `(611, 1)` 的二维数组,而 `y_train` 是一个形状为 `(1, 611)` 的二维数组,因此无法直接进行运算。
你可以尝试使用以下代码将 `y_train` 转换为一维数组,再进行运算:
```
train_predict = scaler.inverse_transform(train_predict)
train_predict = train_predict.reshape(-1) # 将结果变为一维数组
y_train = scaler.inverse_transform(y_train.reshape(-1, 1)).reshape(-1) # 将结果变为一维数组
```
同样的,你也需要将 `y_test` 转换为一维数组,再进行相应的操作。
阅读全文