(sinx ^3+cox ^3)/1的积分
时间: 2023-10-16 09:06:20 浏览: 207
这个积分可以通过换元来求解。我们可以将分子进行因式分解,得到:
sin^3(x) + cos^3(x) = (sin(x) + cos(x))(sin^2(x) - sin(x)cos(x) + cos^2(x))
由于sin^2(x) + cos^2(x) = 1,因此:
sin^2(x) - sin(x)cos(x) + cos^2(x) = 1 - sin(x)cos(x)
将上面的式子代入原式,得到:
∫(sin^3(x) + cos^3(x))/1 dx = ∫(sin(x) + cos(x))(1 - sin(x)cos(x)) dx
我们可以将sin(x) + cos(x)表示成根号2的形式,即:
sin(x) + cos(x) = √2(sin(x + π/4))
令t = sin(x + π/4),则:
dt/dx = cos(x + π/4) = (cos(x) - sin(x))/√2
那么,原式可以变为:
∫(sin^3(x) + cos^3(x))/1 dx = √2∫t(1 - t^2) dx
对右侧的积分进行求解,得到:
∫t(1 - t^2) dx = ∫(t - t^3) dx = 1/2 t^2 - 1/4 t^4 + C
将t代回,得到:
∫(sin^3(x) + cos^3(x))/1 dx = √2 (1/2 sin^2(x+π/4) - 1/4 sin^4(x+π/4)) + C'
其中,C'为常数。这就是原式的解。
相关问题
1/(sinx ^3+cox ^3)的积分
这个积分可以通过换元来求解。我们可以先对分母进行因式分解,得到:
sin^3(x) + cos^3(x) = (sin(x) + cos(x))(sin^2(x) - sin(x)cos(x) + cos^2(x))
由于sin^2(x) + cos^2(x) = 1,因此:
sin^2(x) - sin(x)cos(x) + cos^2(x) = 1 - sin(x)cos(x)
将上面的式子代入原式,得到:
∫1/(sin^3(x) + cos^3(x)) dx = ∫1/[(sin(x) + cos(x))(1 - sin(x)cos(x))] dx
我们可以将sin(x) + cos(x)表示成根号2的形式,即:
sin(x) + cos(x) = √2(sin(x + π/4))
令t = sin(x + π/4),则:
dt/dx = cos(x + π/4) = (cos(x) - sin(x))/√2
那么,原式可以变为:
∫1/[(sin(x) + cos(x))(1 - sin(x)cos(x))] dx = √2∫1/[t(1 - t^2)] dt
对右侧的积分进行求解,可以使用部分分式分解法,得到:
∫1/[t(1 - t^2)] dt = 1/2 ∫[1/(t-1) - 1/t - 1/(t+1)] dt
对上式右侧三个部分的积分,可以通过求对数积分来解决,得到:
∫1/(t-1) dt = ln|t-1| + C1
∫1/t dt = ln|t| + C2
∫1/(t+1) dt = ln|t+1| + C3
将t代回,得到:
∫1/[(sin(x) + cos(x))(1 - sin(x)cos(x))] dx = 1/2 √2 [ln|tan(x/2 + π/4)| - ln|tan(x/2)| - ln|tan(x/2 - π/4)|] + C'
其中C'为常数。这就是原式的解。
1/(sinx ^3+cox ^3)的积分比较简单的做饭
这个积分可以用三角恒等式化简,得到:
1/(sin^3(x) + cos^3(x)) = 1/[(sin(x) + cos(x))(sin^2(x) - sin(x)cos(x) + cos^2(x))]
由于sin^2(x) + cos^2(x) = 1,因此:
sin^2(x) - sin(x)cos(x) + cos^2(x) = 1 - sin(x)cos(x)
将上面的式子代入分母中,得到:
1/(sin^3(x) + cos^3(x)) = 1/[(sin(x) + cos(x))(1 - sin(x)cos(x))]
我们可以将sin(x) + cos(x)表示成根号2的形式,即:
sin(x) + cos(x) = √2(sin(x + π/4))
令t = sin(x + π/4),则:
dt/dx = cos(x + π/4) = (cos(x) - sin(x))/√2
那么,原式可以变为:
∫1/[(sin(x) + cos(x))(1 - sin(x)cos(x))] dx = ∫1/[√2t(1 - t^2)] dt
对右侧的积分进行求解,可以使用换元法,令u = 1 - t^2,则:
du/dt = -2t,因此dt = -1/(2t) du
将u代入原式,得到:
∫1/[√2t(1 - t^2)] dt = -1/(2√2) ∫1/[tu^(1/2)] du
再次使用换元法,令v = u^(1/2),则:
dv/du = 1/(2u^(1/2)),因此du = 2v dv
将v代入原式,得到:
∫1/[tu^(1/2)] du = ∫1/(tv) 2v dv = 2∫1/t dt = 2ln|t| + C
将t代回,得到:
∫1/[(sin(x) + cos(x))(1 - sin(x)cos(x))] dx = -1/(√2) ln|1 - t^2| + C'
其中,C'为常数。将t代回,得到:
∫1/(sin^3(x) + cos^3(x)) dx = -1/(√2) ln|1 - sin^2(x + π/4)| + C'
这就是原式的解。
阅读全文