ukf代码python
时间: 2023-10-12 10:14:56 浏览: 128
以下是Python实现的无迹卡尔曼滤波(Unscented Kalman Filter,UKF)的示例代码:
```python
import numpy as np
class UKF:
def __init__(self, n, m, alpha, beta, kappa):
self.n = n # 状态向量维度
self.m = m # 观测向量维度
self.alpha = alpha # UKF参数
self.beta = beta # UKF参数
self.kappa = kappa # UKF参数
self.lambda_ = alpha**2 * (n + kappa) - n
self.Wm, self.Wc = self._compute_weights(n, kappa, alpha, beta)
self.x = np.zeros((n, 1)) # 状态向量
self.P = np.eye(n) # 状态协方差矩阵
self.Q = np.eye(n) # 状态噪声协方差矩阵
self.R = np.eye(m) # 观测噪声协方差矩阵
def _compute_weights(self, n, kappa, alpha, beta):
lambda_ = alpha**2 * (n + kappa) - n
c = n + lambda_
Wm = np.zeros((2*n+1, 1))
Wc = np.zeros((2*n+1, 1))
Wm[0] = lambda_ / c
Wc[0] = lambda_ / c + (1 - alpha**2 + beta)
for i in range(1, 2*n+1):
Wm[i] = 1 / (2*c)
Wc[i] = 1 / (2*c)
return Wm, Wc
def _compute_sigma_points(self, x, P):
n = x.shape[0]
X = np.zeros((n, 2*n+1))
L = np.linalg.cholesky((n+self.lambda_)*P)
X[:,0] = x.flatten()
for i in range(n):
X[:,i+1] = (x + L[:,i]).flatten()
X[:,i+1+n] = (x - L[:,i]).flatten()
return X
def predict(self, dt):
X = self._compute_sigma_points(self.x, self.P)
n = X.shape[0]
X_pred = np.zeros((n, 2*n+1))
for i in range(2*n+1):
X_pred[:,i] = self._state_function(X[:,i], dt).flatten()
x_pred = X_pred.dot(self.Wm)
P_pred = self.Q
for i in range(2*n+1):
P_pred += self.Wc[i] * np.outer(X_pred[:,i]-x_pred, X_pred[:,i]-x_pred)
self.x = x_pred
self.P = P_pred
def update(self, z):
X = self._compute_sigma_points(self.x, self.P)
n = X.shape[0]
Z = np.zeros((self.m, 2*n+1))
for i in range(2*n+1):
Z[:,i] = self._observation_function(X[:,i]).flatten()
z_pred = Z.dot(self.Wm)
Pz_pred = self.R
Pxz = np.zeros((n, self.m))
for i in range(2*n+1):
Pz_pred += self.Wc[i] * np.outer(Z[:,i]-z_pred, Z[:,i]-z_pred)
Pxz += self.Wc[i] * np.outer(X[:,i]-self.x, Z[:,i]-z_pred)
K = Pxz.dot(np.linalg.inv(Pz_pred))
self.x += K.dot(z - z_pred)
self.P -= K.dot(Pz_pred).dot(K.T)
def _state_function(self, x, dt):
# 状态转移函数
pass
def _observation_function(self, x):
# 观测函数
pass
```
其中,`n`表示状态向量的维度,`m`表示观测向量的维度,`alpha`、`beta`和`kappa`是UKF的参数。`_compute_weights()`方法用于计算权重矩阵,`_compute_sigma_points()`方法用于计算sigma点,`predict()`方法用于预测状态,`update()`方法用于更新状态。`_state_function()`方法是状态转移函数,`_observation_function()`方法是观测函数,需要根据具体问题实现。
阅读全文