ukf python代码
时间: 2023-07-09 15:51:40 浏览: 163
以下是一个简单的基于Python实现的UKF代码示例,供您参考:
```python
import numpy as np
class UKF:
def __init__(self, dim_x, dim_z, fx, hx, dt, alpha, beta, kappa):
self.dim_x = dim_x
self.dim_z = dim_z
self.fx = fx
self.hx = hx
self.dt = dt
self.alpha = alpha
self.beta = beta
self.kappa = kappa
self.weights = self.compute_weights()
self.mean = np.zeros(dim_x)
self.cov = np.eye(dim_x)
def predict(self, u=None):
sigmas = self.compute_sigma_points(self.mean, self.cov, self.alpha, self.beta, self.kappa)
sigmas = [self.fx(sigma, self.dt, u) for sigma in sigmas]
self.mean, self.cov = self.compute_mean_cov(sigmas, self.weights)
def update(self, z):
sigmas = self.compute_sigma_points(self.mean, self.cov, self.alpha, self.beta, self.kappa)
zs = [self.hx(sigma) for sigma in sigmas]
z_mean, z_cov = self.compute_mean_cov(zs, self.weights)
Pxz = np.zeros((self.dim_x, self.dim_z))
for i in range(len(sigmas)):
dx = sigmas[i] - self.mean
dz = zs[i] - z_mean
Pxz += self.weights[i] * np.outer(dx, dz)
K = np.dot(Pxz, np.linalg.inv(z_cov))
innovation = z - z_mean
self.mean += np.dot(K, innovation)
self.cov -= np.dot(K, np.dot(z_cov, K.T))
def compute_sigma_points(self, mean, cov, alpha, beta, kappa):
n = self.dim_x
lamda = alpha ** 2 * (n + kappa) - n
U = np.linalg.cholesky((n + lamda) * cov)
X = np.zeros((2 * n + 1, n))
X[0] = mean
for k in range(n):
X[k + 1] = mean + U[k]
X[n + k + 1] = mean - U[k]
return X
def compute_weights(self):
n = self.dim_x
lamda = self.alpha ** 2 * (n + self.kappa) - n
c = 0.5 / (n + lamda)
weights = np.full(2 * n + 1, c)
weights[0] = lamda / (n + lamda)
return weights
def compute_mean_cov(self, sigmas, weights):
mean = np.average(sigmas, axis=0, weights=weights)
cov = np.zeros((self.dim_x, self.dim_x))
for i in range(len(sigmas)):
dx = sigmas[i] - mean
cov += weights[i] * np.outer(dx, dx)
return mean, cov
```
使用方法:
1. 初始化UKF实例,指定状态向量和观测向量的维度、状态转移函数和观测函数、时间间隔、UKF参数(alpha、beta和kappa)。
2. 调用predict方法进行预测,传入控制向量(可选)。
3. 调用update方法进行更新,传入观测向量。
4. 重复步骤2和3,进行连续的预测和更新。
阅读全文