无迹卡尔曼Python代码
时间: 2024-06-01 08:05:52 浏览: 190
无迹卡尔曼滤波(Unscented Kalman Filter,UKF)是卡尔曼滤波的一种扩展,通过引入无迹变换,解决了在高斯分布非线性变换后不再是高斯分布的问题。Python实现无迹卡尔曼滤波的代码如下:
```
import numpy as np
# UKF参数设置
alpha = 0.001
beta = 2
kappa = 0
# 状态维度
n = 3
# 测量维度
m = 1
# 状态转移函数
def f(x):
return np.array([[x+x], [x+x], [x]])
# 测量函数
def h(x):
return x
# 状态转移矩阵
def F(x, dt):
F = np.array([[1, dt, 0], [0, 1, dt], [0, 0, 1]])
return F
# 测量矩阵
def H(x):
return np.array([[1, 0, 0]])
# 过程噪声协方差矩阵
def Q(x, dt):
q = 0.01
Q = np.array([[q*dt**3/3, q*dt**2/2, 0], [q*dt**2/2, q*dt, 0], [0, 0, 0]])
return Q
# 测量噪声协方差矩阵
def R(x):
r = 0.1
R = np.array([[r]])
return R
# 初始状态和协方差矩阵
x = np.array([, , ])
P = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
# UKF权重计算
lambda_ = alpha**2*(n+kappa)-n
c = n+lambda_
Wm = np.zeros(2*n+1)
Wc = np.zeros(2*n+1)
Wm = lambda_/c
Wc = lambda_/(c+(1-alpha**2+beta))
for i in range(1, 2*n+1):
Wm[i] = Wc[i] = 1/(2*c)
# UKF主函数
def UKF(x, P, z, dt):
# Sigma点计算
X = np.zeros((n, 2*n+1))
X[:,0] = x[:,0]
A = np.linalg.cholesky((n+kappa)*P)
for i in range(n):
X[:,i+1] = x[:,0]+A[:,i]
X[:,i+n+1] = x[:,0]-A[:,i]
# 预测均值和协方差矩阵
x_ = np.zeros((n,1))
for i in range(2*n+1):
x_ += Wm[i]*f(X[:,i:i+1])
P_ = Q(X[:,0:1], dt)
for i in range(1, 2*n+1):
P_ += Wc[i]*(f(X[:,i:i+1])-x_).dot((f(X[:,i:i+1])-x_).T)
# 计算测量值和协方差矩阵
Z = np.zeros((m, 2*n+1))
for i in range(2*n+1):
Z[:,i:i+1] = h(X[:,i:i+1])
z_ = np.zeros((m,1))
for i in range(2*n+1):
z_ += Wm[i]*Z[:,i:i+1]
S = R(z) + np.dot(np.dot(H(x_), P_), H(x_).T)
for i in range(1, 2*n+1):
S += Wc[i]*(Z[:,i:i+1]-z_).dot((Z[:,i:i+1]-z_).T)
# 计算卡尔曼增益
K = np.dot(np.dot(P_, H(x_).T), np.linalg.inv(S))
# 更新状态和协方差矩阵
x = x_ + np.dot(K, z-z_)
P = P_ - np.dot(np.dot(K, S), K.T)
return x,P
# 测试数据
T = 50
dt = 0.01
t = np.arange(0,T,dt)
N = len(t)
z = np.sin(t)
# UKF滤波器迭代计算
for i in range(N):
x,P = UKF(x,P,z[i:i+1],dt)
```
阅读全文