无迹卡尔曼python代码
时间: 2024-05-13 11:11:46 浏览: 119
无迹卡尔曼滤波(Unscented Kalman Filter,简称UKF)是一种基于无迹变换(Unscented Transformation)的卡尔曼滤波算法,它在非线性系统中的估计问题上表现出了很好的性能。相对于传统的扩展卡尔曼滤波(Extended Kalman Filter,简称EKF),UKF不需要对非线性函数进行泰勒展开,因此可以避免扰动方差的引入和计算复杂度的增加。
以下是一个用Python实现的简单的无迹卡尔曼滤波器代码,仅供参考:
```python
import numpy as np
class UnscentedKalmanFilter:
def __init__(self, dim_x, dim_z, fx, hx, dt):
self.dim_x = dim_x
self.dim_z = dim_z
self.fx = fx
self.hx = hx
self.dt = dt
self.x = np.zeros((dim_x, 1))
self.P = np.eye(dim_x)
self.Q = np.eye(dim_x)
self.R = np.eye(dim_z)
self.alpha = 1e-3
self.beta = 2
self.kappa = 0
self.weights_mean = np.zeros((2 * dim_x + 1,))
self.weights_cov = np.zeros((2 * dim_x + 1,))
lambda_ = self.alpha**2 * (dim_x + self.kappa) - dim_x
c = dim_x + lambda_
Wm = np.zeros((2 * dim_x + 1,))
Wc = np.zeros((2 * dim_x + 1,))
for i in range(2 * dim_x + 1):
if i == 0:
Wm[i] = lambda_ / c
Wc[i] = lambda_ / c + (1 - self.alpha**2 + self.beta)
else:
Wm[i] = 1 / (2 * c)
Wc[i] = 1 / (2 * c)
self.Wm = Wm
self.Wc = Wc
def predict(self):
sigmas = self._compute_sigma_points(self.x, self.P)
x_pred = np.zeros((self.dim_x, 1))
for i in range(len(sigmas)):
x_pred += self.weights_mean[i] * self.fx(sigmas[i], self.dt)
P_pred = np.zeros((self.dim_x, self.dim_x))
for i in range(len(sigmas)):
err = self.fx(sigmas[i], self.dt) - x_pred
P_pred += self.weights_cov[i] * np.outer(err, err)
P_pred += self.Q
self.x = x_pred
self.P = P_pred
def update(self, z):
sigmas = self._compute_sigma_points(self.x, self.P)
z_pred = np.zeros((self.dim_z, 1))
for i in range(len(sigmas)):
z_pred += self.weights_mean[i] * self.hx(sigmas[i])
Pzz = np.zeros((self.dim_z, self.dim_z))
for i in range(len(sigmas)):
err = self.hx(sigmas[i]) - z_pred
Pzz += self.weights_cov[i] * np.outer(err, err)
Pzz += self.R
Pxz = np.zeros((self.dim_x, self.dim_z))
for i in range(len(sigmas)):
err_x = sigmas[i] - self.x
err_z = self.hx(sigmas[i]) - z_pred
Pxz += self.weights_cov[i] * np.outer(err_x, err_z)
K = np.dot(Pxz, np.linalg.inv(Pzz))
y = z - z_pred
x_post = self.x + np.dot(K, y)
P_post = self.P - np.dot(K, np.dot(Pzz, K.T))
self.x = x_post
self.P = P_post
def _compute_sigma_points(self, x, P):
lambda_ = self.alpha**2 * (self.dim_x + self.kappa) - self.dim_x
c = self.dim_x + lambda_
U = np.linalg.cholesky(c * P)
sigmas = np.zeros((2 * self.dim_x + 1, self.dim_x))
sigmas = x.flatten()
for k in range(self.dim_x):
sigmas[k + 1] = (x + U[k]).flatten()
sigmas[self.dim_x + k + 1] = (x - U[k]).flatten()
return sigmas
```
该代码实现了一个基本的无迹卡尔曼滤波器类,包括了初始化、预测、更新和计算sigma点等基本操作。其中fx和hx分别为状态转移函数和观测函数,dt为时间步长。使用时,需要根据具体的问题定义对应的状态转移函数和观测函数,并将其传递给无迹卡尔曼滤波器类的构造函数。
阅读全文