python的ukf代码
时间: 2023-10-12 13:15:11 浏览: 139
UKF算法的代码
以下是Python中的UKF(无迹卡尔曼滤波器)实现代码,使用NumPy库:
```python
import numpy as np
class UnscentedKalmanFilter:
def __init__(self, dim_x, dim_z, fx, hx, dt, points, sqrt_fn=None, sqrt_x=None, x_mean_fn=None, z_mean_fn=None):
self.dim_x = dim_x
self.dim_z = dim_z
self.fx = fx
self.hx = hx
self.dt = dt
self.points = points
if sqrt_fn is None:
self.sqrt_fn = np.linalg.cholesky
else:
self.sqrt_fn = sqrt_fn
if sqrt_x is None:
self.sqrt_x = np.linalg.cholesky
else:
self.sqrt_x = sqrt_x
if x_mean_fn is None:
self.x_mean_fn = self.mean
else:
self.x_mean_fn = x_mean_fn
if z_mean_fn is None:
self.z_mean_fn = self.mean
else:
self.z_mean_fn = z_mean_fn
self.reset()
def reset(self):
self.x = np.zeros((self.dim_x, 1))
self.P = np.eye(self.dim_x)
self.Q = np.eye(self.dim_x)
self.R = np.eye(self.dim_z)
self.y = np.zeros((self.dim_z, 1))
self.sigma_points = np.zeros((self.dim_x, self.points * 2 + 1))
self.sigmas_f = np.zeros((self.dim_x, self.points * 2 + 1))
self.sigmas_h = np.zeros((self.dim_z, self.points * 2 + 1))
def mean(self, sigmas, Wm):
return np.dot(sigmas, Wm)
def residual(self, a, b):
y = a - b
y[1] = self.wrap_angle(y[1])
return y
def wrap_angle(self, angle):
return angle - 2 * np.pi * np.floor((angle + np.pi) / (2 * np.pi))
def predict(self, u=None):
self.sigma_points = self.compute_sigma_points(self.x, self.P)
for i in range(self.points * 2 + 1):
self.sigmas_f[:, [i]] = self.fx(self.sigma_points[:, [i]], self.dt, u)
x, P = self.unscented_transform(self.sigmas_f, self.x_mean_fn, self.sqrt_fn, self.Q)
self.x = x
self.P = P
def update(self, z):
self.sigma_points = self.compute_sigma_points(self.x, self.P)
for i in range(self.points * 2 + 1):
self.sigmas_h[:, [i]] = self.hx(self.sigma_points[:, [i]])
z_mean, S = self.unscented_transform(self.sigmas_h, self.z_mean_fn, self.sqrt_x, self.R)
Pxz = np.zeros((self.dim_x, self.dim_z))
for i in range(self.points * 2 + 1):
Pxz += np.dot(self.residual(self.sigmas_f[:, [i]], self.x), self.residual(self.sigmas_h[:, [i]], z_mean).T) * self.points
K = np.dot(Pxz, np.linalg.inv(S))
self.y = self.residual(z, z_mean)
self.x += np.dot(K, self.y)
self.P -= np.dot(K, np.dot(S, K.T))
def compute_sigma_points(self, x, P):
sigmas = np.zeros((self.dim_x, self.points * 2 + 1))
sigmas[:, [0]] = x
sqrt_P = self.sqrt_fn(P)
for i in range(self.dim_x):
sigmas[:, [i + 1]] = x + sqrt_P[:, [i]] * self.points
sigmas[:, [i + 1 + self.dim_x]] = x - sqrt_P[:, [i]] * self.points
return sigmas
def unscented_transform(self, sigmas, mean_fn, sqrt_fn, cov=None, add_noise=False, noise=None):
Wm = np.ones(2 * self.dim_x + 1) / (2 * self.dim_x)
Wc = Wm.copy()
Wc[0] = Wc[0] + (1 - np.square(self.dim_x)) + 2 * add_noise
if noise is None:
noise = np.zeros((self.dim_x, 1))
x = mean_fn(sigmas, Wm)
y = sigmas - x
P = np.dot(y, np.dot(np.diag(Wc), y.T))
if cov is not None:
P += cov
sqrt_P = sqrt_fn(P)
return x + noise, sqrt_P
```
其中,`dim_x`和`dim_z`分别是状态向量和观测向量的维度,`fx`和`hx`分别是状态转移函数和观测函数,`dt`是时间间隔,`points`是Sigma点的数量,`sqrt_fn`和`sqrt_x`是函数,用于计算协方差矩阵的平方根,`x_mean_fn`和`z_mean_fn`分别是函数,用于计算均值。`reset`方法用于重置滤波器状态。`mean`方法用于计算均值,`residual`方法用于计算残差,`wrap_angle`方法用于对角度进行约束。`predict`方法用于预测,`update`方法用于更新。`compute_sigma_points`方法用于计算Sigma点,`unscented_transform`方法用于实现无迹变换。
阅读全文