UKF python
时间: 2023-12-28 07:26:17 浏览: 174
UKF(Unscented Kalman Filter)是一种非线性滤波器,它通过使用无味卡尔曼滤波器(UKF)来逼近非线性函数的概率分布。下面是一个使用Python实现UKF的示例代码:
```python
import numpy as np
def unscented_transform(sigma_points, weights):
mean = np.average(sigma_points, axis=0, weights=weights)
covariance = np.cov(sigma_points.T, ddof=0, aweights=weights)
return mean, covariance
def unscented_kalman_filter(x, P, z, Q, R, f, h):
n = len(x)
m = len(z)
alpha = 1e-3
kappa = 0
beta = 2
lambda_ = alpha**2 * (n + kappa) - n
c = n + lambda_
Wm = np.full(2*n+1, 1.0 / (2*c))
Wc = np.full(2*n+1, 1.0 / (2*c))
Wm[0] = lambda_ / c
Wc[0] = lambda_ / c + (1 - alpha**2 + beta)
sigma_points = np.zeros((2*n+1, n))
sigma_points[0] = x
sqrt_P = np.linalg.cholesky(P)
for i in range(n):
sigma_points[i+1] = x + sqrt_P[i]
sigma_points[n+i+1] = x - sqrt_P[i]
predicted_sigma_points = np.zeros((2*n+1, n))
for i in range(2*n+1):
predicted_sigma_points[i] = f(sigma_points[i])
predicted_x, predicted_P = unscented_transform(predicted_sigma_points, Wm)
predicted_z_sigma_points = np.zeros((2*n+1, m))
for i in range(2*n+1):
predicted_z_sigma_points[i] = h(predicted_sigma_points[i])
predicted_z, predicted_z_covariance = unscented_transform(predicted_z_sigma_points, Wm)
Pzz = predicted_z_covariance + R
Pxz = np.zeros((n, m))
for i in range(2*n+1):
Pxz += Wc[i] * np.outer(sigma_points[i] - x, predicted_z_sigma_points[i] - predicted_z)
K = np.dot(Pxz, np.linalg.inv(Pzz))
x = predicted_x + np.dot(K, z - predicted_z)
P = predicted_P - np.dot(K, np.dot(Pzz, K.T))
return x, P
# 定义状态转移函数
def f(x):
return np.array([x[0] + x[1], x[1]])
# 定义观测函数
def h(x):
return np.array([x[0]])
# 初始化状态和协方差矩阵
x = np.array([0, 0])
P = np.array([[1, 0], [0, 1]])
# 定义过程噪声和观测噪声的协方差矩阵
Q = np.array([[0.1, 0], [0, 0.1]])
R = np.array([[1]])
# 定义观测数据
z = np.array([1])
# 使用UKF进行滤波
x, P = unscented_kalman_filter(x, P, z, Q, R, f, h)
print("Filtered state:", x)
print("Filtered covariance:", P)
```
阅读全文