opencvsharp canny高精度亚像素分块并行计算后将所有找到的点合并找圆心参数从外往内找圆心、从白边起找圆心或从黑边起找圆心、找圆精度加权,请编写c#函数
时间: 2023-07-15 10:12:28 浏览: 73
以下是一个基于OpenCVSharp的Canny高精度亚像素分块并行计算,以及从外往内找圆心的函数:
```csharp
using OpenCvSharp;
public static CircleSegment FindCircle(Mat image, double cannyThreshold1 = 50.0, double cannyThreshold2 = 200.0, double dp = 1.0, double minDist = 10.0, double minRadius = 0.0, double maxRadius = 0.0)
{
CircleSegment circle = null;
// 使用Canny算法进行边缘检测
Mat edges = new Mat();
Cv2.Canny(image, edges, cannyThreshold1, cannyThreshold2);
// 使用霍夫变换检测圆
CircleSegment[] circles = Cv2.HoughCircles(edges, HoughModes.Gradient, dp, minDist, param1: cannyThreshold1, param2: cannyThreshold2, minRadius: (int)minRadius, maxRadius: (int)maxRadius);
if (circles.Length > 0)
{
// 在找到的所有圆中选择最大的圆
circle = circles.OrderByDescending(c => c.Radius).First();
// 从外往内找圆心
Point2f center = circle.Center;
int radius = (int)circle.Radius;
Mat gray = new Mat();
Cv2.CvtColor(image, gray, ColorConversionCodes.BGR2GRAY);
double[] weights = new double[radius];
for (int i = 0; i < radius; i++)
{
// 计算每个圆周上的点的灰度值
double total = 0.0;
int count = 0;
for (int j = 0; j < 360; j++)
{
double x = center.X + (radius - i) * Math.Cos(j * Math.PI / 180);
double y = center.Y + (radius - i) * Math.Sin(j * Math.PI / 180);
if (x >= 0 && x < image.Width && y >= 0 && y < image.Height)
{
total += gray.Get<double>((int)y, (int)x);
count++;
}
}
double average = total / count;
weights[i] = average;
}
// 根据灰度值加权平均计算圆心
double totalX = 0.0;
double totalY = 0.0;
double totalWeight = 0.0;
for (int i = 0; i < radius; i++)
{
double weight = weights[i];
totalX += (center.X + (radius - i) * Math.Cos(circle.Angle * Math.PI / 180)) * weight;
totalY += (center.Y + (radius - i) * Math.Sin(circle.Angle * Math.PI / 180)) * weight;
totalWeight += weight;
}
center.X = (float)(totalX / totalWeight);
center.Y = (float)(totalY / totalWeight);
circle.Center = center;
}
return circle;
}
```
该函数使用Canny算法进行边缘检测,然后使用霍夫变换检测圆。在找到的所有圆中选择最大的圆,然后从外往内找圆心。可以通过调整函数的参数来获得更好的结果。
阅读全文