计算机图形学 绕x轴旋转45°,再绕旋转后的坐标系的y轴旋转15°,组合的变换矩阵是什么?

时间: 2024-09-14 11:13:04 浏览: 46
计算机图形学中的绕轴旋转通常涉及到旋转变换矩阵。首先绕X轴旋转45度,然后绕新的Y轴(实际上是旋转后的Z轴)旋转15度,可以分为两步: 1. 绕X轴旋转45度:我们可以将这个旋转视为绕原点O的一个二维旋转。对于绕X轴正向旋转θ(这里是45度),对应的旋转矩阵R_x(45°)是一个特殊的斜对角线矩阵,其形式为: ``` | cos(θ) -sin(θ) | | sin(θ) cos(θ) | ``` 对于45度,cos(45°) = sin(45°) = √2 / 2。 2. 绕新Y轴旋转15度:因为X轴已经旋转了45度,所以新Y轴实际上是原来的Z轴,即绕垂直轴(Z轴)。这个旋转矩阵R_z(15°),也是绕原点的,形式为: ``` | cos(θ) 0 -sin(θ) | | 0 1 0 | | sin(θ) 0 cos(θ) | ``` 其中,对于15度,cos(15°) ≈ 0.9659,sin(15°) ≈ 0.2588。 组合这两个旋转矩阵,你需要先应用第一个旋转,然后再应用第二个。顺序很重要,因为矩阵乘法代表连续应用变换。所以总变换矩阵M为: ``` M = R_z(15°) * R_x(45°) ``` 计算实际矩阵会有些复杂,但结果会是个3x3的复数矩阵。如果你需要精确的数值结果,建议使用数学软件或在线计算器来进行计算。
相关问题

某一坐标[x,y,z]先绕X轴顺时针旋转30°,然后再绕Y轴顺时针旋转45°,请写出坐标变换矩阵。

当你需要对三维坐标系中的点进行旋转变换时,通常会使用旋转矩阵来描述旋转操作。对于绕X轴旋转30度,然后绕Y轴旋转45度的操作,可以分别计算两个旋转矩阵,再将它们相乘得到最终的组合旋转矩阵。 1. 绕X轴旋转的角度一般用右手定则,旋转90度对应于单位正交矩阵加上负角对应的齐次变换矩阵。30度的旋转矩阵`R_X(30)`如下: ```plaintext | cos(30) -sin(30) 0 | | sin(30) cos(30) 0 | | 0 0 1 | ``` 2. 绕Y轴旋转45度的旋转矩阵`R_Y(45)`也是类似: ```plaintext | cos(45) 0 sin(45) | | 0 1 0 | | -sin(45) 0 cos(45) | ``` 将这两个矩阵相乘,因为Y轴旋转是在X轴旋转之后进行的,所以顺序很重要,先做X轴旋转,矩阵相乘的顺序就是`R_Y * R_X`: ```plaintext | cos(45)*cos(30) -sin(45)*sin(30) sin(45) | | cos(45)*sin(30) + sin(45)*cos(30) 0 | | -sin(45) 0 | ``` 这就是最终的旋转矩阵。注意,这里的角度都是弧度制。如果你的输入是度数,记得转换成弧度进行计算。

三维坐标系绕X轴旋转矩阵

三维坐标系绕X轴旋转的矩阵可以通过综合引用和得到。根据引用,我们可以知道绕X轴旋转的矩阵是由三个旋转变换矩阵相乘得到的。其中,第一个旋转变换矩阵绕X轴旋转θ角度,θ为旋转角度。其他两个旋转变换矩阵则是绕Y轴和Z轴旋转0度。这样,我们就得到了三维坐标系绕X轴旋转的矩阵。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [详解坐标变换矩阵 - 绕 x 轴旋转的旋转矩阵](https://blog.csdn.net/jiesunliu3215/article/details/129733910)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
阅读全文

相关推荐

最新推荐

recommend-type

根据旋转矩阵求旋转欧拉角

例如,对于顺序RxRyRz,我们可以首先找到绕Z轴的旋转角γ,然后在新的坐标系下找到绕Y轴的旋转角β,最后在新坐标系下找到绕X轴的旋转角α。 - 不同的旋转顺序会导致解出的欧拉角有不同的物理意义,因此在实际应用...
recommend-type

原理详解_三点解算两个坐标系之间的旋转矩阵和平移向量

首先,我们设定目标是求解坐标系2相对于坐标系1的转换关系,即找到一个旋转矩阵R和一个平移向量T,使得坐标系2中的点P2可以通过变换公式P1=R*P2+T转换到坐标系1中。 给定三个不共线的点A、B、C在两个坐标系下的坐标...
recommend-type

教师节主题班会.pptx

教师节主题班会.pptx
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【损失函数与批量梯度下降】:分析批量大小对损失函数影响,优化模型学习路径

![损失函数(Loss Function)](https://img-blog.csdnimg.cn/20190921134848621.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzc3MjUzMw==,size_16,color_FFFFFF,t_70) # 1. 损失函数与批量梯度下降基础 在机器学习和深度学习领域,损失函数和批量梯度下降是核心概念,它们是模型训练过程中的基石。理解它们的基础概念对于构建