% 定义4个隐含层 W1 = rand(size(Ttrain2)); BI1 = rand(size(Ttrain2)); W2 = rand(size(Ttrain2)); BI2 = rand(size(Ttrain2)); W3 = rand(size(Ttrain2)); BI3 = rand(size(Ttrain2)); W4 = rand(size(Ttrain2)); BI4 = rand(size(Ttrain2)); % 输出层 WO = rand(size(Ttrain2)); BO = rand(size(Ttrain2)); % 学习率 Lr = 0.005; % 迭代次数 Iter = 2000; for it = 1:Iter it; % 训练 tmps1 = relu(Ptrain2.*WI + BI); residual1 = Ttrain2 - tmps1; % 第一层残差 tmps2 = relu(tmps1.*W1 + BI1); residual2 = Ttrain2 - tmps2; % 第二层残差 tmps3 = relu(tmps2.*W2 + BI2); residual3 = Ttrain2 - tmps3; % 第三层残差 tmps4 = relu(tmps3.*W3 + BI3); residual4 = Ttrain2 - tmps4; % 第四层残差 tmps5 = relu(tmps4.*W4 + BI4); residual5 = Ttrain2 - tmps5; % 第五层残差 tmps6 = relu(tmps5.*WO+BO); residual6 = Ttrain2 - tmps6; % 输出层残差 % 更新网络参数 W1 = W1 + Lr * relu_derivative(residual2) .* tmps1 + Lr * relu_derivative(residual1) .* tmps1; BI1 = BI1 + Lr * relu_derivative(residual2) + Lr * relu_derivative(residual1); W2 = W2 + Lr * relu_derivative(residual3) .* tmps2 + Lr * relu_derivative(residual2) .* tmps2; BI2 = BI2 + Lr * relu_derivative(residual3) + Lr * relu_derivative(residual2); W3 = W3 + Lr * relu_derivative(residual4) .* tmps3 + Lr * relu_derivative(residual3) .* tmps3; BI3 = BI3 + Lr * relu_derivative(residual4) + Lr * relu_derivative(residual3); W4 = W4 + Lr * relu_derivative(residual5) .* tmps4 + Lr * relu_derivative(residual4) .* tmps4; BI4 = BI4 + Lr * relu_derivative(residual5) + Lr * relu_derivative(residual4); % 输出层 WO = WO + Lr * residual6 .* tmps5; BO = BO + Lr * residual6; errors(it) = mean2(abs(residual6)); end

时间: 2024-04-19 17:29:27 浏览: 94
这段代码是一个神经网络的训练过程。首先定义了4个隐含层的权重和偏置,以及输出层的权重和偏置。学习率和迭代次数也被定义了。 然后,在每次迭代中,通过前向传播计算出每一层的输出,并计算出每一层的残差。接着,根据残差和激活函数的导数来更新网络参数。 最后,计算当前迭代的误差,并保存在errors数组中。 这段代码中使用了ReLU作为激活函数,relu_derivative()函数计算了ReLU函数的导数。
相关问题

神经网络隐含层节点数2n-1

神经网络的隐含层节点数通常是根据经验公式2n-1来确定,其中n代表输入层的节点数。这个公式的提出是为了在实际应用中找到一个合适的隐含层节点数,以便实现神经网络的高效运行和良好的性能。 隐含层节点数2n-1的选择是基于经验和实践总结出来的。在实际操作中,这样的节点数通常能够满足大多数情况下的需求,能够在保证网络有效性的基础上尽可能地减少计算复杂度和提高计算效率。 通过2n-1的公式,我们能够很方便地根据输入层节点数来确定隐含层节点数,从而避免了随意选择节点数所导致的网络性能不佳的问题。当然,在实际应用中,为了更好地满足具体问题的需求,节点数的选择还需要结合实际情况进行综合考虑和调整。 总的来说,神经网络的隐含层节点数2n-1这个经验公式是为了帮助我们更好地构建和设计网络结构,以实现网络的高效运行和良好的性能。在具体应用中,我们可以根据问题的特点和需求对节点数进行适当调整,以便更好地解决实际问题。

解释下这段代码E=zeros(1,loopNumber); for ii=1:loopNumber E(ii)=0; for i=1:1:1500 %% 网络预测输出 x=inputn(:,i); % 隐含层输出 for j=1:1:midnum I(j)=inputn(:,i)'*w1(j,:)'+b1(j); Iout(j)=1/(1+exp(-I(j))); end % 输出层输出 yn=w2'*Iout'+b2; %% 权值阀值修正 %计算误差 e=output_train(:,i)-yn; E(ii)=E(ii)+sum(abs(e)); %计算权值变化率 dw2=e*Iout; db2=e'; for j=1:1:midnum S=1/(1+exp(-I(j))); FI(j)=S*(1-S); end for k=1:1:innum for j=1:1:midnum dw1(k,j)=FI(j)*x(k)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4)); db1(j)=FI(j)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4)); end end w1=w1_1+xite*dw1'; b1=b1_1+xite*db1'; w2=w2_1+xite*dw2'; b2=b2_1+xite*db2'; w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; b1_2=b1_1;b1_1=b1; b2_2=b2_1;b2_1=b2; end end

这段代码是一个简单的神经网络的训练过程。首先,代码初始化了一个名为E的一维数组,长度为loopNumber。然后进行了loopNumber次循环。 在每次循环中,代码对1500个输入样本进行处理。首先,从输入样本中获取一个输入向量x。然后,通过输入向量和权重矩阵w1以及偏置向量b1计算隐藏层的输出Iout。接下来,通过权重矩阵w2和偏置向量b2计算网络的预测输出yn。 然后,代码计算了误差e,即训练样本的期望输出与网络预测输出的差值,并将其累加到E(ii)中。 接下来,代码根据误差和隐藏层的输出计算了权值变化率dw2和db2,并计算了隐藏层神经元的激活函数的导数FI。 接着,代码根据FI、输入向量x、误差e和权重矩阵w2计算了权值变化率dw1和db1。 最后,代码根据学习率xite和权值变化率更新了权重矩阵w1和w2以及偏置向量b1和b2,并将更新后的权重矩阵和偏置向量保存在w1_1、w2_1、b1_1和b2_1中。 整个过程重复loopNumber次,最终得到了E数组,其中存储了每次循环的总误差。

相关推荐

###function approximation f(x)=sin(x) ###2018.08.14 ###激活函数用的是sigmoid import numpy as np import math import matplotlib.pyplot as plt x = np.linspace(-3, 3, 600) # print(x) # print(x[1]) x_size = x.size y = np.zeros((x_size, 1)) # print(y.size) for i in range(x_size): y[i] = math.sin(2*math.pi*0.4*x[i])+ math.sin(2*math.pi*0.1*x[i]) + math.sin(2*math.pi*0.9*x[i]) # print(y) hidesize = 10 W1 = np.random.random((hidesize, 1)) # 输入层与隐层之间的权重 B1 = np.random.random((hidesize, 1)) # 隐含层神经元的阈值 W2 = np.random.random((1, hidesize)) # 隐含层与输出层之间的权重 B2 = np.random.random((1, 1)) # 输出层神经元的阈值 threshold = 0.005 max_steps = 1001 def sigmoid(x_): y_ = 1 / (1 + math.exp(-x_)) return y_ E = np.zeros((max_steps, 1)) # 误差随迭代次数的变化 Y = np.zeros((x_size, 1)) # 模型的输出结果 for k in range(max_steps): temp = 0 for i in range(x_size): hide_in = np.dot(x[i], W1) - B1 # 隐含层输入数据 # print(x[i]) hide_out = np.zeros((hidesize, 1)) # 隐含层的输出数据 for j in range(hidesize): # print("第{}个的值是{}".format(j,hide_in[j])) # print(j,sigmoid(j)) hide_out[j] = sigmoid(hide_in[j]) # print("第{}个的值是{}".format(j, hide_out[j])) # print(hide_out[3]) y_out = np.dot(W2, hide_out) - B2 # 模型输出 # print(y_out) Y[i] = y_out # print(i,Y[i]) e = y_out - y[i] # 模型输出减去实际结果。得出误差 ##反馈,修改参数 dB2 = -1 * threshold * e dW2 = e * threshold * np.transpose(hide_out) dB1 = np.zeros((hidesize, 1)) for j in range(hidesize): dB1[j] = np.dot(np.dot(W2[0][j], sigmoid(hide_in[j])), (1 - sigmoid(hide_in[j])) * (-1) * e * threshold) dW1 = np.zeros((hidesize, 1)) for j in range(hidesize): dW1[j] = np.dot(np.dot(W2[0][j], sigmoid(hide_in[j])), (1 - sigmoid(hide_in[j])) * x[i] * e * threshold) W1 = W1 - dW1 B1 = B1 - dB1 W2 = W2 - dW2 B2 = B2 - dB2 temp = temp + abs(e) E[k] = temp if k % 100 == 0: print(k) plt.figure() plt.plot(x, Y) plt.plot(x, Y, color='red', linestyle='--') plt.show()这个程序如何每迭代100次就输出一次图片

最新推荐

recommend-type

数字信号处理实验报告-(2)-离散傅里叶变换(DFT).doc

给定一个序列主值x(n) = [0 1 2 3 2 1 0],实验目标包括: 1. 计算并显示该序列的幅度频谱和相位频谱,这可以通过执行DFT并提取复数结果的模和角度来实现。 2. 对比通过傅里叶级数逆变换得到的图形与原信号图形,...
recommend-type

SQLAlchemy-2.0.31-cp38-cp38-musllinux_1_2_x86_64.whl

SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
recommend-type

slim-0.7.0a1-py3-none-any.whl

whl软件包,直接pip install安装即可
recommend-type

lxml-5.0.1-cp310-cp310-win32.whl

lxml 是一个用于 Python 的库,它提供了高效的 XML 和 HTML 解析以及搜索功能。它是基于 libxml2 和 libxslt 这两个强大的 C 语言库构建的,因此相比纯 Python 实现的解析器(如 xml.etree.ElementTree),lxml 在速度和功能上都更为强大。 主要特性 快速的解析和序列化:由于底层是 C 实现的,lxml 在解析和序列化 XML/HTML 文档时非常快速。 XPath 和 CSS 选择器:支持 XPath 和 CSS 选择器,这使得在文档中查找特定元素变得简单而强大。 清理和转换 HTML:lxml 提供了强大的工具来清理和转换不规范的 HTML,比如自动修正标签和属性。 ETree API:提供了类似于 ElementTree 的 API,但更加完善和强大。 命名空间支持:相比 ElementTree,lxml 对 XML 命名空间提供了更好的支持。
recommend-type

Vue实现iOS原生Picker组件:详细解析与实现思路

"Vue.js实现iOS原生Picker效果及实现思路解析" 在iOS应用中,Picker组件通常用于让用户从一系列选项中进行选择,例如日期、时间或者特定的值。Vue.js作为一个流行的前端框架,虽然原生不包含与iOS Picker完全相同的组件,但开发者可以通过自定义组件来实现类似的效果。本篇文章将详细介绍如何在Vue.js项目中创建一个模仿iOS原生Picker功能的组件,并分享实现这一功能的思路。 首先,为了创建这个组件,我们需要一个基本的DOM结构。示例代码中给出了一个基础的模板,包括一个外层容器`<div class="pd-select-item">`,以及两个列表元素`<ul class="pd-select-list">`和`<ul class="pd-select-wheel">`,分别用于显示选定项和可滚动的选择项。 ```html <template> <div class="pd-select-item"> <div class="pd-select-line"></div> <ul class="pd-select-list"> <li class="pd-select-list-item">1</li> </ul> <ul class="pd-select-wheel"> <li class="pd-select-wheel-item">1</li> </ul> </div> </template> ``` 接下来,我们定义组件的属性(props)。`data`属性是必需的,它应该是一个数组,包含了所有可供用户选择的选项。`type`属性默认为'cycle',可能用于区分不同类型的Picker组件,例如循环滚动或非循环滚动。`value`属性用于设置初始选中的值。 ```javascript props: { data: { type: Array, required: true }, type: { type: String, default: 'cycle' }, value: {} } ``` 为了实现Picker的垂直居中效果,我们需要设置CSS样式。`.pd-select-line`, `.pd-select-list` 和 `.pd-select-wheel` 都被设置为绝对定位,通过`transform: translateY(-50%)`使其在垂直方向上居中。`.pd-select-list` 使用`overflow:hidden`来隐藏超出可视区域的部分。 为了达到iOS Picker的3D滚动效果,`.pd-select-wheel` 设置了`transform-style: preserve-3d`,确保子元素在3D空间中保持其位置。`.pd-select-wheel-item` 的每个列表项都设置了`position:absolute`,并使用`backface-visibility:hidden`来优化3D变换的性能。 ```css .pd-select-line, .pd-select-list, .pd-select-wheel { position: absolute; left: 0; right: 0; top: 50%; transform: translateY(-50%); } .pd-select-list { overflow: hidden; } .pd-select-wheel { transform-style: preserve-3d; height: 30px; } .pd-select-wheel-item { white-space: nowrap; text-overflow: ellipsis; backface-visibility: hidden; position: absolute; top: 0px; width: 100%; overflow: hidden; } ``` 最后,为了使组件能够响应用户的滚动操作,我们需要监听触摸事件,更新选中项,并可能还需要处理滚动动画。这通常涉及到计算滚动位置,映射到数据数组,以及根据滚动方向调整可见项的位置。 总结来说,实现Vue.js中的iOS原生Picker效果,需要构建一个包含可滚动列表的自定义组件,通过CSS样式实现3D滚动效果,并通过JavaScript处理触摸事件来模拟Picker的行为。通过这种方式,开发者可以在Vue.js项目中创建出与iOS原生界面风格一致的用户交互体验。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【广度优先搜索】:Python面试中的系统化思维展现

![【广度优先搜索】:Python面试中的系统化思维展现](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20200611200432/Top-10-System-Design-Interview-Questions-and-Answers.png) # 1. 广度优先搜索(BFS)算法概述 广度优先搜索(Breadth-First Search, BFS)算法是图论中的一种基本算法,广泛应用于计算机科学和工程领域。它是对树或图进行遍历的一种方法,按照距离起点的远近逐层进行搜索,直到找到目标节点或遍历完所有可到达的节点。这种算法
recommend-type

nginx ubuntu离线安装

Nginx是一款开源的高性能Web服务器和反向代理服务器,常用于Linux系统,如Ubuntu。离线安装通常指在没有网络连接的情况下本地获取并配置软件包。以下是Nginx在Ubuntu上离线安装的基本步骤: 1. **下载Nginx包**: - 首先,你需要从Nginx官方网站下载适用于Ubuntu的二进制包。访问 https://nginx.org/en/download.html ,选择对应版本的`nginx`文件,比如`nginxxx.x.tar.gz`,将其保存到你的离线环境中。 2. **解压并移动文件**: 使用`tar`命令解压缩下载的文件: ```
recommend-type

Arduino蓝牙小车:参数调试与功能控制

本资源是一份基于Arduino Mega2560主控的蓝牙遥控小车程序代码,适用于Android设备通过蓝牙进行操控。该程序允许车辆实现运动、显示和测温等多种功能,具有较高的灵活性和实用性。 1. **蓝牙通信与模块操作** 在程序开始时,开发者提醒用户在上传代码前需将蓝牙模块的RX接口暂时拔掉,上传成功后再恢复连接。这可能是因为在调试过程中,需要确保串口通信的纯净性。程序通过Serial.begin()函数设置串口波特率为9600,这是常见的蓝牙通信速率,适合于手机等设备连接。 2. **电机控制参数调整** 代码中提到的"偏转角度需要根据场地不同进行调参数",表明程序设计为支持自定义参数,通过宏变量的形式,用户可以根据实际需求对小车的转向灵敏度进行个性化设置。例如,`#define left_forward_PIN4` 和 `#define right_forward_PIN2` 定义了左右轮的前进控制引脚,这些引脚的输出值范围是1-255,允许通过编程精确控制轮速。 3. **行驶方向控制** 小车的行驶方向通过改变特定引脚的高低电平来实现。例如,`void left_forward_PIN4` 和 `void left_back_PIN5` 分别控制左轮前进和后退,用户可以通过赋予高或低电平来指示小车的行驶方向。同时,右轮的控制方式类似。 4. **多种移动模式** 除了基本的前进和后退,程序还提供了原地左转、原地右转、右前、左前、左后和右后的控制函数,如`void turnLeftOrigin()` 等,增强了小车的机动性和操作多样性。 5. **主函数和循环结构** 主函数`void setup()`用于初始化硬件,包括串口通信和引脚配置。而`void loop()`则是一个无限循环,通过`void reve()`函数不断接收并处理蓝牙发送的指令,保持小车持续响应用户的控制命令。 6. **数据接收与解析** `void reve()`函数通过`Serial.parseInt()`读取蓝牙发送的数字值(7在示例中被提及),然后根据接收到的指令执行相应的移动命令,体现了程序的核心逻辑部分。 总结来说,这份蓝牙小车程序代码为开发人员提供了一个基础平台,通过调整参数和编写特定的控制函数,能够实现不同场景下的小车控制,具有较强的通用性和可扩展性。对于学习和实践Arduino与蓝牙通信的开发者来说,这是一个很好的学习和实践案例。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依