PINN是什么,如何使用PINN,能够给出一个实例吗

时间: 2024-11-05 22:11:59 浏览: 197
PINN全称是Physics-Informed Neural Networks,物理感知神经网络,它是一种结合了机器学习和数值计算的方法。在PINN中,神经网络不仅用于预测模型的输出,还直接嵌入了对物理定律和边界条件的约束。这种框架允许我们训练网络来解决诸如偏微分方程(PDEs)等复杂的数学问题,而无需显式的离散化步骤。 使用PINN的基本流程包括以下几个步骤: 1. 定义物理模型:首先明确你要解决的问题的物理原理,例如热传导、流体力学等,并将其转化为一组偏微分方程。 2. 设计神经网络架构:创建一个或多层神经网络结构,作为函数逼近器,输入通常是空间坐标或其他变量。 3. 编码边界条件:将边界条件(如初始条件、边界值)编码到损失函数中,这通常通过在网络的输入和输出上设置特定点的期望值实现。 4. 训练网络:采用梯度下降或其他优化算法最小化由物理方程和边界条件组成的损失函数,同时更新网络权重。 5. 验证结果:检查训练得到的网络解是否满足物理定律和边界条件,并通过可视化和数值测试评估其精度。 一个简单的例子可能是用PINN来模拟二维波方程。给定时间域内的波动方程,你可以建立一个包含空间位置和时间的神经网络,然后训练网络以适应方程及其边界条件,比如波的初始形状和固定端点的行为。训练完成后,网络就能预测波的传播路径和形态。
相关问题

PINN求解pde的数据集是什么

PINN(Physics-Informed Neural Networks)是一种结合了神经网络和偏微分方程(PDE)求解的方法。在PINN中,我们需要使用PDE的边界条件和初始条件来训练神经网络,以求得最优的PDE解。因此,PINN需要PDE的数据集,包括边界条件和初始条件。 具体而言,对于一个给定的PDE问题,我们需要将其转化为一个优化问题,以通过神经网络求解。这个优化问题的目标函数包括两部分:PDE的残差项和边界条件的误差项。因此,我们需要提供PDE的方程式和边界条件的数据集。 对于边界条件,我们需要提供在边界上的函数值或导数值。对于初始条件,我们需要提供一个初始状态的函数值。在PINN中,我们可以使用数值方法(如有限差分法)来计算PDE的残差项,并将其作为目标函数的一部分。因此,PINN需要一个PDE问题的域数据,以计算PDE的残差项。 总之,PINN需要的数据集包括:PDE的方程式、边界条件、初始条件和PDE问题的域数据。

python PINN求解一维Sod的预测解并给出精确解以及代码

Sod问题是一个经典的气体动力学问题,它描述了一个强激波穿过气体的过程。在这里,我们将使用物理信息神经网络(PINN)来预测一维Sod问题的解,并将其与精确解进行比较。 首先,定义问题的初始和边界条件: $$\begin{aligned} \rho(x,0) &= \begin{cases} 1 & x<0.5 \\ 0.125 & x\geq 0.5 \end{cases} \\ u(x,0) &= 0 \\ p(x,0) &= \begin{cases} 1 & x<0.5 \\ 0.1 & x\geq 0.5 \end{cases} \\ \rho(0,t) &= 1 \\ u(0,t) &= 0 \\ p(0,t) &= 1 \\ \rho(1,t) &= 0.125 \\ u(1,t) &= 0 \\ p(1,t) &= 0.1 \end{aligned} $$ 接下来,我们将使用PINN来求解这个问题。首先,我们需要导入必要的库: ```python import tensorflow as tf import numpy as np import matplotlib.pyplot as plt ``` 然后,我们定义网络的结构和损失函数: ```python class SodPINN(tf.keras.Model): def __init__(self): super(SodPINN, self).__init__() self.dense1 = tf.keras.layers.Dense(50, activation=tf.nn.tanh, input_shape=(1,)) self.dense2 = tf.keras.layers.Dense(50, activation=tf.nn.tanh) self.dense3 = tf.keras.layers.Dense(50, activation=tf.nn.tanh) self.dense4 = tf.keras.layers.Dense(50, activation=tf.nn.tanh) self.dense5 = tf.keras.layers.Dense(50, activation=tf.nn.tanh) self.dense6 = tf.keras.layers.Dense(50, activation=tf.nn.tanh) self.dense7 = tf.keras.layers.Dense(3) def call(self, inputs): x = inputs x = self.dense1(x) x = self.dense2(x) x = self.dense3(x) x = self.dense4(x) x = self.dense5(x) x = self.dense6(x) return self.dense7(x) def pinn_loss(model, x, rho, u, p, gamma): with tf.GradientTape(persistent=True) as g: g.watch(x) # Forward pass inputs = tf.concat([x, rho, u, p], axis=1) pred = model(inputs) # Extracting predictions rho_pred = pred[:, 0:1] u_pred = pred[:, 1:2] p_pred = pred[:, 2:3] # Computing gradients drho_dx = g.gradient(rho_pred, x) du_dx = g.gradient(u_pred, x) dp_dx = g.gradient(p_pred, x) # Computing residual terms rho_res = drho_dx + rho_pred * (u_pred - u_pred[:, 0:1]) / (x - x[:, 0:1]) u_res = du_dx + (p_pred - p_pred[:, 0:1]) / (rho_pred * (x - x[:, 0:1])) - (gamma - 1) / gamma * (u_pred - u_pred[:, 0:1]) * (dp_dx / p_pred) p_res = dp_dx + gamma * p_pred * (u_pred - u_pred[:, 0:1]) / (x - x[:, 0:1]) # Computing loss loss = tf.reduce_mean(tf.square(rho_res) + tf.square(u_res) + tf.square(p_res)) return loss ``` 接下来,我们将定义一些必要的变量,并初始化模型: ```python # Defining constants gamma = 1.4 N = 10000 x = np.linspace(0, 1, N)[:, None] rho = np.zeros((N, 1)) u = np.zeros((N, 1)) p = np.zeros((N, 1)) for i in range(N): if x[i] < 0.5: rho[i] = 1 u[i] = 0 p[i] = 1 else: rho[i] = 0.125 u[i] = 0 p[i] = 0.1 # Initializing model model = SodPINN() optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3) ``` 然后,我们将训练模型: ```python # Training model for epoch in range(10000): with tf.GradientTape() as tape: loss = pinn_loss(model, x, rho, u, p, gamma) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) if epoch % 1000 == 0: print("Epoch: {}, Loss: {}".format(epoch, loss.numpy())) ``` 最后,我们将绘制预测解和精确解的比较图: ```python # Computing predictions inputs = tf.concat([x, rho, u, p], axis=1) pred = model(inputs) rho_pred = pred[:, 0:1].numpy() u_pred = pred[:, 1:2].numpy() p_pred = pred[:, 2:3].numpy() # Computing exact solution rho_exact = np.zeros((N, 1)) u_exact = np.zeros((N, 1)) p_exact = np.zeros((N, 1)) for i in range(N): if x[i] < 0.5: rho_exact[i] = 1 u_exact[i] = 0 p_exact[i] = 1 else: rho_exact[i] = 0.125 u_exact[i] = 0 p_exact[i] = 0.1 # Plotting results plt.figure(1) plt.plot(x, rho_pred, 'r-', label='PINN') plt.plot(x, rho_exact, 'k--', label='Exact') plt.xlabel('x') plt.ylabel('Density') plt.legend() plt.figure(2) plt.plot(x, u_pred, 'r-', label='PINN') plt.plot(x, u_exact, 'k--', label='Exact') plt.xlabel('x') plt.ylabel('Velocity') plt.legend() plt.figure(3) plt.plot(x, p_pred, 'r-', label='PINN') plt.plot(x, p_exact, 'k--', label='Exact') plt.xlabel('x') plt.ylabel('Pressure') plt.legend() plt.show() ``` 完整代码如下:
阅读全文

相关推荐

最新推荐

recommend-type

C2000,28335Matlab Simulink代码生成技术,处理器在环,里面有电力电子常用的GPIO,PWM,ADC,DMA,定时器中断等各种电力电子工程师常用的模块儿,只需要有想法剩下的全部自

C2000,28335Matlab Simulink代码生成技术,处理器在环,里面有电力电子常用的GPIO,PWM,ADC,DMA,定时器中断等各种电力电子工程师常用的模块儿,只需要有想法剩下的全部自动代码生成, 电源建模仿真与控制原理 (1)数字电源的功率模块建模 (2)数字电源的环路补偿器建模 (3)数字电源的仿真和分析 (4)如何把数学控制方程变成硬件C代码; (重点你的想法如何实现)这是重点数字电源硬件资源、软件设计、上机实验调试 (1) DSP硬件资源; (2)DSP的CMD文件与数据的Q格式: (3) DSP的C程序设计; (4)数字电源的软件设计流程 (5)数字电源上机实验和调试(代码采用全中文注释)还有这个,下面来看看都有啥,有视频和对应资料(S代码,对应课件详细讲述传递函数推倒过程。
recommend-type

OpenArk64-1.3.8beta版-20250104

OpenArk64-1.3.8beta版-20250104,beta版解决Windows 11 23H2及以上进入内核模式,查看系统热键一片空白的情况
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【文献整理高效法】:ENDNOTE软件实用功能及快捷操作揭秘

![【文献整理高效法】:ENDNOTE软件实用功能及快捷操作揭秘](https://europe1.discourse-cdn.com/endnote/optimized/2X/a/a18b63333c637eb5d6fafb609a4eff7bd46df6b0_2_1024x391.jpeg) # 摘要 本文综合探讨了ENDNOTE在文献整理和管理中的作用及其高效操作技巧。首先介绍了文献整理的重要性和ENDNOTE软件的简介,随后深入解析了ENDNOTE的基本功能,包括文献信息的导入与管理、引用和参考文献的生成,以及文献搜索与数据库集成。接着,本文详细阐述了ENDNOTE的高效操作技巧,涵
recommend-type

在使用SQL创建存储过程时,是否可以在定义输入参数时直接为其赋予初始值?

在使用SQL创建存储过程时,通常可以在定义输入参数时为其赋予初始值。这种做法可以使参数具有默认值,当调用存储过程时,如果没有提供该参数的值,则会使用默认值。以下是一个示例: ```sql CREATE PROCEDURE MyProcedure @Param1 INT = 10, @Param2 NVARCHAR(50) = 'DefaultValue' AS BEGIN -- 存储过程的主体 SELECT @Param1 AS Param1, @Param2 AS Param2 END ``` 在这个示例中,`@Param1`和`@Param2`是输入参数