2D attention实现
时间: 2023-07-14 15:13:18 浏览: 103
2D attention是指在处理二维数据(如图像)时,使用注意力机制来自动地选择相关的特征。下面是一个简单的2D attention实现例子:
```python
import tensorflow as tf
def two_d_attention(inputs, num_heads):
# inputs: [batch_size, height, width, channels]
# num_heads: number of attention heads
# Flatten the spatial dimensions
flattened = tf.reshape(inputs, [-1, inputs.shape[1] * inputs.shape[2], inputs.shape[3]])
# Compute the query, key, and value vectors
query = tf.layers.dense(flattened, units=inputs.shape[3])
key = tf.layers.dense(flattened, units=inputs.shape[3])
value = tf.layers.dense(flattened, units=inputs.shape[3])
# Split the query, key, and value vectors into multiple heads
query = tf.concat(tf.split(query, num_heads, axis=2), axis=0)
key = tf.concat(tf.split(key, num_heads, axis=2), axis=0)
value = tf.concat(tf.split(value, num_heads, axis=2), axis=0)
# Compute the dot product of the query and key vectors
dots = tf.matmul(query, key, transpose_b=True)
dots /= tf.sqrt(tf.cast(inputs.shape[3], tf.float32))
# Apply softmax to obtain the attention weights
weights = tf.nn.softmax(dots, axis=-1)
# Apply the attention weights to the value vectors
attended = tf.matmul(weights, value)
# Concatenate the multiple heads and reshape to the original spatial dimensions
concatenated = tf.concat(tf.split(attended, num_heads, axis=0), axis=2)
reshaped = tf.reshape(concatenated, [-1, inputs.shape[1], inputs.shape[2], inputs.shape[3]])
# Add a residual connection and layer normalization
output = tf.layers.dense(inputs + reshaped, units=inputs.shape[3]])
output = tf.contrib.layers.layer_norm(output)
return output
```
这个实现使用了一个简单的多头注意力机制,它将输入张量展平为一个矩阵,然后对其进行线性变换(通过query、key和value向量),将其划分为多个头,并计算每个头的注意力权重。然后将注意力权重应用于value向量,并将结果连接在一起,最后通过残差连接和层规范化来获得最终输出。
阅读全文