in_features = train_features.shape[1] def train(model, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] theta = np.zeros((in_features, 1)) best_theta = np.zeros((in_features, 1)) best_loss = np.inf for epoch in range(num_epochs): train_iter = data_iter(batch_size, train_features, train_labels) for X, y in train_iter: theta=gradientDescent(X, y, theta, learning_rate, weight_decay) train_ls.append(log_rmse(model, train_features, train_labels, theta, len(train_labels)))帮我加个注释
时间: 2023-06-19 15:04:05 浏览: 129
create_balanced_train_test.zip_The Divide
# in_features表示输入特征的数量
in_features = train_features.shape[1]
# 定义训练函数,接受模型、训练数据、测试数据、超参数等作为输入
def train(model, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
# 初始化训练误差和测试误差列表
train_ls, test_ls = [], []
# 初始化模型参数theta(权重)
theta = np.zeros((in_features, 1))
# 初始化最佳模型参数和最小测试误差
best_theta = np.zeros((in_features, 1))
best_loss = np.inf
# 循环迭代训练num_epochs次
for epoch in range(num_epochs):
# 随机生成batch_size大小的数据批次,用于训练
train_iter = data_iter(batch_size, train_features, train_labels)
# 遍历数据批次,计算梯度并更新模型参数theta
for X, y in train_iter:
theta=gradientDescent(X, y, theta, learning_rate, weight_decay)
# 计算每轮迭代后的训练误差和测试误差,并存入对应的列表中
train_ls.append(log_rmse(model, train_features, train_labels, theta, len(train_labels)))
test_ls.append(log_rmse(model, test_features, test_labels, theta, len(test_labels)))
# 如果当前模型参数对应的测试误差比历史最小值更小,则更新最佳模型参数和最小测试误差
if test_ls[-1] < best_loss:
best_theta = theta
best_loss = test_ls[-1]
# 返回最佳模型参数和训练误差、测试误差列表
return best_theta, train_ls, test_ls
阅读全文