Eigen::Vector3f 转std::vector<float>

时间: 2023-07-20 15:24:48 浏览: 86
可以使用Eigen库自带的Map函数将Eigen::Vector3f对象转换为std::vector<float>类型,代码如下: ```c++ #include <iostream> #include <vector> #include <Eigen/Core> int main() { Eigen::Vector3f vec3f(1.23f, 2.34f, 3.45f); std::vector<float> vec; vec.resize(3); Eigen::Map<Eigen::Vector3f>(&vec[0]) = vec3f; for (auto i : vec) { std::cout << i << ", "; } std::cout << std::endl; return 0; } ``` 输出结果为: ``` 1.23, 2.34, 3.45, ``` 其中,Eigen::Map模板类用于将Eigen库中的对象映射到其他数据类型的对象上,这里将Eigen::Vector3f对象映射到一个std::vector<float>类型的对象上。注意,在使用Eigen::Map时,需要保证目标对象的内存空间已经分配,否则会引发未定义的行为。
相关问题

pcl::SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::computePointSHOT ( const int index, const std::vector<int> &indices, const std::vector<float> &sqr_dists, Eigen::VectorXf &shot)

该函数是 PCL 库中的一个函数,用于计算一个点的 SHOT 描述符。其中具体参数含义如下: - index:需要计算 SHOT 描述符的点在点云中的索引; - indices:在计算 SHOT 描述符时,使用的点的索引,不一定包含需要计算 SHOT 的点; - sqr_dists:需要计算 SHOT 描述符的点与 indices 中每个点之间的距离的平方; - shot:计算出的 SHOT 描述符。 函数主要步骤如下: 1. 从输入点云中获取需要计算 SHOT 描述符的点的法向量和 RFT(Reference Frame Transform)描述符; 2. 对于每个邻域点,计算其相对于需要计算 SHOT 描述符的点的 RFT 描述符,并用这些 RFT 描述符计算一个 9 维的直方图; 3. 将直方图归一化,得到 352 维的 SHOT 描述符。 这个函数的主要作用是计算点云中的 SHOT 描述符,可以用于点云配准、物体识别等任务。

vector<tuple<float, int, int>> Matcher::LSS_R_Fast2_Dist_eigen(vector<tuple<float, int, int>> &corr, SingleTemplate & latent_template, SingleTemplate & rolled_template, float d_thr)

Matcher::LSS_R_Fast2_Dist_eigen是一个函数,它接受一个名为corr的vector<tuple<float, int, int>>类型的引用,以及SingleTemplate类型的引用latent_template和rolled_template,还有一个浮点型参数d_thr。该函数的作用是计算两个模板之间的距离,并返回一组距离小于d_thr的匹配结果。具体实现可以参考以下示例代码: ```cpp #include <vector> #include <tuple> struct SingleTemplate { // 定义模板的数据结构 }; class Matcher { public: std::vector<std::tuple<float, int, int>> LSS_R_Fast2_Dist_eigen(std::vector<std::tuple<float, int, int>>& corr, SingleTemplate& latent_template, SingleTemplate& rolled_template, float d_thr) { // 在这里实现LSS_R_Fast2_Dist_eigen函数的逻辑 std::vector<std::tuple<float, int, int>> result; // 计算两个模板之间的距离 // 将距离小于d_thr的匹配结果加入到result中 return result; } }; ``` 使用示例: ```cpp int main() { Matcher matcher; std::vector<std::tuple<float, int, int>> corr; SingleTemplate latent_template, rolled_template; float d_thr = 0.5; std::vector<std::tuple<float, int, int>> result = matcher.LSS_R_Fast2_Dist_eigen(corr, latent_template, rolled_template, d_thr); // 处理匹配结果 return 0; } ``` 请注意,这只是一个简单的示例,具体的实现需要根据你的需求进行适当修改。

相关推荐

void Trajectory::predict_box( uint idx_duration, std::vector<Box>& vec_box, std::vector<Eigen::MatrixXf, Eigen::aligned_allocatorEigen::MatrixXf>& vec_cova, bool& is_replay_frame) { vec_box.clear(); vec_cova.clear(); if (is_replay_frame) { for (auto iter = map_current_box_.begin(); iter != map_current_box_.end(); ++iter) { Destroy(iter->second.track_id()); } m_track_start_.Clear_All(); NU = 0; is_replay_frame = false; } Eigen::MatrixXf F_temp = F_; F_temp(0, 1) = idx_duration * F_(0, 1); F_temp(2, 3) = idx_duration * F_(2, 3); F_temp(4, 5) = idx_duration * F_(4, 5); uint64_t track_id; Eigen::Matrix<float, 6, 1> state_lidar; Eigen::Matrix<float, 6, 6> P_kkminus1; Eigen::Matrix3f S_temp; for (auto beg = map_current_box_.begin(); beg != map_current_box_.end(); ++beg) { float t = (fabs(0.1 - beg->second.frame_duration()) > 0.05) ? 0.1 : 0.2 - beg->second.frame_duration(); F_temp(0, 1) = t; F_temp(2, 3) = t; F_temp(4, 5) = t; // uint64_t timestamp_new = beg->second.timestamp() + uint(10.0 * t * NANO_FRAME); track_id = beg->first; state_lidar = F_temp * map_lidar_state_.at(track_id); P_kkminus1 = F_temp * map_lidar_cova_.at(track_id) * F_temp.transpose() + Q_lidar_; S_temp = H_ * P_kkminus1 * H_.transpose() + R_lidar_; float psi_new = (1 - P_D_ * P_G_) * beg->second.psi() / (1 - P_D_ * P_G_ * beg->second.psi()); Box bbox = beg->second; bbox.set_psi(psi_new); // bbox.set_timestamp(timestamp_new); bbox.set_position_x(state_lidar(0)); bbox.set_position_y(state_lidar(2)); bbox.set_position_z(state_lidar(4)); bbox.set_speed_x(state_lidar(1)); bbox.set_speed_y(state_lidar(3)); bbox.set_speed_z(state_lidar(5)); vec_box.emplace_back(bbox); vec_cova.emplace_back(S_temp); } AINFO << "Finish predict with duration frame num: " << idx_duration; } 代码解读

最新推荐

recommend-type

基于TC72(SPI接口)温度传感器、STM32F103C8T6、LCD1602、FREERTOS的温度采集proteus仿真

spi
recommend-type

ehcache-core-2.6.9.jar

javaee/javaweb常用jar包,亲测可用,导入到java工程中即可使用
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】MATLAB simulink船舶动力定位模拟器

# 1. MATLAB Simulink 简介** MATLAB Simulink 是 MathWorks 公司开发的一款图形化建模和仿真软件,广泛应用于工程、科学和教育领域。它提供了丰富的模块库和仿真环境,使工程师能够快速构建和仿真复杂系统。 Simulink 的核心概念是基于块状图建模,其中每个模块代表一个特定的功能或组件。用户可以通过拖放模块并连接它们来创建系统模型。Simulink 提供了广泛的模块库,涵盖了信号处理、控制系统、动力学和通信等领域。 此外,Simulink 还支持自定义模块开发,允许用户创建自己的模块来扩展其功能。这使得 Simulink 成为一个高度灵活的仿真平
recommend-type

linux下RS485怎么实现

在Linux下实现RS485通信,需要做以下几个步骤: 1. 确认硬件支持:首先需要确认通信设备硬件是否支持RS485通信,如果不支持需要更换支持RS485通信的硬件设备。 2. 配置串口参数:在Linux下使用RS485通信,需要对串口进行一些特殊的配置。例如,需要将串口设置为半双工模式、开启硬件流控等。可以使用Linux提供的stty命令或者相关API接口进行配置。 3. 编写应用程序:通过Linux提供的串口API接口,编写应用程序实现RS485通信。在应用程序中需要设置对应的串口参数,以及发送和接收数据的逻辑。 4. 配置硬件电平转换器:在使用RS485通信时,需要将串口的逻辑