GNN图级任务代码实现,多分类
时间: 2023-09-27 19:11:55 浏览: 178
图神经网络(Graph Neural Network, GNN)是一类基于图的深度学习模型,主要用于处理图形数据。对于图级任务(Graph-level Task),GNN可以学习整个图的特征,从而进行分类、回归等任务。下面是一个使用PyTorch实现的GNN图级任务多分类代码示例。
首先,我们需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from sklearn.model_selection import train_test_split
import numpy as np
import networkx as nx
```
接着,我们定义一个数据集类,用于加载图数据。这里假设每个图都由一个邻接矩阵和一个标签组成。我们使用NetworkX库生成图,然后将邻接矩阵和标签转换为PyTorch张量。
```python
class GraphDataset(Dataset):
def __init__(self, graphs, labels):
self.graphs = graphs
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
graph = self.graphs[idx]
label = self.labels[idx]
adj = nx.to_numpy_matrix(graph)
adj = torch.from_numpy(adj).float()
label = torch.tensor(label).long()
return adj, label
```
接着,我们定义一个GNN模型。这里我们使用基于消息传递的GNN模型,具体来说就是每个节点会接收相邻节点的信息,并结合自身特征,生成新的节点特征表示。我们使用两层GraphConv层来实现这个过程。最后,我们将整个图的特征汇总,并通过一个全连接层进行多分类。
```python
class GNN(nn.Module):
def __init__(self, in_dim, hidden_dim, out_dim):
super(GNN, self).__init__()
self.conv1 = GraphConv(in_dim, hidden_dim)
self.conv2 = GraphConv(hidden_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, out_dim)
def forward(self, adj):
x = F.relu(self.conv1(adj))
x = F.relu(self.conv2(adj))
x = x.mean(dim=0)
x = self.fc(x)
return x
```
接着,我们定义一个GraphConv层,它可以接收邻接矩阵和节点特征表示,并计算出每个节点的新特征表示。这里我们使用类似于卷积神经网络的方式来实现。
```python
class GraphConv(nn.Module):
def __init__(self, in_dim, out_dim):
super(GraphConv, self).__init__()
self.lin = nn.Linear(in_dim, out_dim)
def forward(self, adj):
x = adj.mm(self.lin(weight))
x = x / adj.sum(dim=1, keepdim=True)
return x
```
接着,我们加载数据集,并进行训练和测试。这里我们使用交叉熵损失函数和Adam优化器。
```python
# Load data
graphs = [...] # a list of NetworkX graphs
labels = [...] # a list of labels
train_data, test_data, train_labels, test_labels = train_test_split(graphs, labels, test_size=0.2, random_state=42)
train_dataset = GraphDataset(train_data, train_labels)
test_dataset = GraphDataset(test_data, test_labels)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# Train model
model = GNN(in_dim=10, hidden_dim=32, out_dim=5)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
for epoch in range(10):
for adj, label in train_loader:
optimizer.zero_grad()
output = model(adj)
loss = criterion(output, label)
loss.backward()
optimizer.step()
# Evaluate model
model.eval()
correct = 0
total = 0
for adj, label in test_loader:
output = model(adj)
_, predicted = torch.max(output.data, 1)
total += label.size(0)
correct += (predicted == label).sum().item()
accuracy = 100 * correct / total
print("Accuracy: {:.2f}%".format(accuracy))
```
这个示例代码演示了如何使用GNN进行图级任务的多分类。你可以根据自己的数据集和需求,调整模型结构和超参数。
阅读全文