欧拉图和欧拉路判断c语言

时间: 2023-11-26 16:03:53 浏览: 264
欧拉图的判断可以通过统计每个节点的度数,若每个节点的度数均为偶数,则该图为欧拉图;若有且仅有两个节点的度数为奇数,则该图为半欧拉图;否则,该图不是欧拉图。 欧拉路的判断可以通过统计每个节点的度数,若存在两个节点的度数为奇数,或者存在孤立节点,则该图不可能存在欧拉路;若所有节点的度数均为偶数,则该图存在欧拉路;否则,该图不可能存在欧拉路。 以上是C语言的判断欧拉图和欧拉路的方法。
相关问题

用c语言求有向欧拉图和无向欧拉图的欧拉回路

欧拉回路指经过图中每条边恰好一次的回路。欧拉图指存在欧拉回路的图。 对于无向图,判断是否是欧拉图可以使用 Fleury 算法。如果该图联通且每个点的度数都是偶数,则该图是欧拉图。欧拉回路可以使用 Hierholzer 算法求解。 以下是 C 语言实现无向图欧拉回路的代码(假设点编号从0开始): ```c #include <stdio.h> #include <stdlib.h> #define MAXN 1000 int n, m; // n 个点,m 条边 int deg[MAXN]; // 存储每个点的度数 int G[MAXN][MAXN]; // 存储图 int ans[MAXN], ans_cnt; // 存储欧拉回路,ans_cnt 表示回路上的点数 void dfs(int u) { for (int v = 0; v < n; v++) { if (G[u][v]) { // 如果存在一条从 u 到 v 的边 G[u][v] = G[v][u] = 0; // 删除该边 dfs(v); } } ans[ans_cnt++] = u; // 将点 u 加入欧拉回路 } int main() { scanf("%d%d", &n, &m); for (int i = 0; i < m; i++) { int u, v; scanf("%d%d", &u, &v); G[u][v] = G[v][u] = 1; // 添加无向边 deg[u]++, deg[v]++; // 维护每个点的度数 } int start = -1; // 找到起点 for (int i = 0; i < n; i++) { if (deg[i] % 2 == 1) { printf("无欧拉回路\n"); return 0; } if (deg[i] > 0 && start == -1) { start = i; } } dfs(start); if (ans_cnt != m+1) { // 如果回路上的点数不等于边数+1,则不存在欧拉回路 printf("无欧拉回路\n"); } else { for (int i = ans_cnt-1; i >= 0; i--) { printf("%d ", ans[i]); } } return 0; } ``` 对于有向图,判断是否是欧拉图需要判断每个点的入度和出度是否相等。欧拉回路的求解可以使用 Hierholzer 算法,与无向图类似。 以下是 C 语言实现有向图欧拉回路的代码(假设点编号从0开始): ```c #include <stdio.h> #include <stdlib.h> #define MAXN 1000 int n, m; // n 个点,m 条边 int indeg[MAXN], outdeg[MAXN]; // 存储每个点的入度和出度 int G[MAXN][MAXN]; // 存储图 int ans[MAXN], ans_cnt; // 存储欧拉回路,ans_cnt 表示回路上的点数 void dfs(int u) { for (int v = 0; v < n; v++) { if (G[u][v]) { // 如果存在一条从 u 到 v 的边 G[u][v] = 0; // 删除该边 dfs(v); } } ans[ans_cnt++] = u; // 将点 u 加入欧拉回路 } int main() { scanf("%d%d", &n, &m); for (int i = 0; i < m; i++) { int u, v; scanf("%d%d", &u, &v); G[u][v] = 1; // 添加有向边 outdeg[u]++, indeg[v]++; // 维护每个点的入度和出度 } int start = -1; // 找到起点 for (int i = 0; i < n; i++) { if (indeg[i] != outdeg[i]) { printf("无欧拉回路\n"); return 0; } if (outdeg[i] > 0 && start == -1) { start = i; } } dfs(start); if (ans_cnt != m+1) { // 如果回路上的点数不等于边数+1,则不存在欧拉回路 printf("无欧拉回路\n"); } else { for (int i = ans_cnt-1; i >= 0; i--) { printf("%d ", ans[i]); } } return 0; } ```

用c语言求欧拉图的欧拉回路,用回溯的方法求得所有欧拉图

欧拉图的欧拉回路是指一条经过图中每条边恰好一次的回路,如果一个无向图存在欧拉回路,那么这个图一定是一个连通图,且每个顶点的度数都为偶数。下面给出用回溯算法求解所有欧拉图的C语言代码: ```c #include <stdio.h> #include <stdlib.h> #define MAXV 1000 // 最大顶点数 int G[MAXV][MAXV]; // 图的邻接矩阵 int V, E; // 顶点数和边数 int degree[MAXV]; // 每个顶点的度数 void dfs(int u, int *path, int len, int *visited) { if (len == E) { // 找到一条欧拉回路 printf("欧拉回路: "); for (int i = 0; i < len; i++) { printf("%d ", path[i]); } printf("\n"); return; } for (int v = 0; v < V; v++) { if (G[u][v] && !visited[v]) { // 如果u和v之间有边,且v未被访问过 visited[v] = 1; path[len] = v; dfs(v, path, len+1, visited); visited[v] = 0; } } } void eulerian_circuit() { int path[MAXV]; // 存储欧拉回路 int visited[MAXV]; // 标记每个顶点是否被访问过 for (int i = 0; i < V; i++) { if (degree[i] % 2 == 1) { // 如果有顶点度数为奇数,无法存在欧拉回路 return; } } for (int i = 0; i < V; i++) { visited[i] = 0; } visited[0] = 1; // 从0号顶点开始搜索 path[0] = 0; dfs(0, path, 1, visited); } int main() { scanf("%d%d", &V, &E); for (int i = 0; i < E; i++) { int u, v; scanf("%d%d", &u, &v); G[u][v] = G[v][u] = 1; degree[u]++; degree[v]++; } eulerian_circuit(); return 0; } ``` 该算法的时间复杂度为 $O(E^2)$,由于需要枚举每个顶点和每条边,因此当图较大时,运行时间会很长。
阅读全文

相关推荐

实验六 欧拉图判定和应用 【实验目的】掌握判断欧拉图的方法。 【实验内容】 判断一个图是不是欧拉图,如果是欧拉图,求出所有欧拉路 【实验原理和方法】 (1)用关系矩阵R=表示图。 (2)对无向图而言,若所有结点的度都是偶数,则该图为欧拉图。 C语言算法: flag=1; for(i=1;i<=n && flag;i++) { sum=0; for(j=1;j<=n;j++) if(r[i][j]) sum++; if(sum%2==0) flag=0; } 如果 flag 该无向图是欧拉图 (3)对有向图而言,若所有结点的入度等于出度,则该图为欧拉图。 C语言算法: flag=1; for(i=1;i<=n && flag;i++) { sum1=0; sum2=0; for(j=1;j<=n;j++) if(r[i][j]) sum1++; for(j=1;j<=n;j++) if(r[j][i]) sum2++; if(sum1%2==0 || sum2%2==0) flag=0; } 如果 flag 该有向图是欧拉图 (4)求出欧拉路的方法:欧拉路经过每条边一次且仅一次。可用回溯的方法求得所有欧拉路。 C语言算法: int count=0,cur=0,r[N][N]; // r[N][N]为图的邻接矩阵,cur为当前结点编号,count为欧拉路的数量。 int sequence[M];// sequence保留访问点的序列,M为图的边数 输入图信息; void try1(int k) //k表示边的序号 { int i,pre=cur; //j保留前一个点的位置,pre为前一结点的编号 for (i=0;i<N;i++) if (r[cur][i]) //当前第cur点到第i点连通 { //删除当前点与第i点的边,记下第k次到达点i,把第i个点设为当前点 r[cur][i]=0;cur=sequence[k]=i; if (k<M) try1(k+1); //试下一个点 else prt1();//经过了所有边,打印一个解 //上面条件不满足,说明当前点的出度为0,回溯,试下一位置 r[pre][i]=1;cur=pre; } }

仿写一下下面的代码实验六 欧拉图判定和应用 【实验目的】掌握判断欧拉图的方法。 【实验内容】 判断一个图是不是,如果是,求出所有欧拉路 【实验原理和方法】 (1)用关系矩阵R=表示图。 (2)对无向图而言,若所有结点的度都是偶数,则该图为欧拉图。 C语言算法: flag=1; for(i=1;i<=n && flag;i++) { sum=0; for(j=1;j<=n;j++) if(r[i][j]) sum++; if(sum%2==0) flag=0; } 如果 flag 该无向图是欧拉图 (3)对有向图而言,若所有结点的入度等于出度,则该图为欧拉图。 C语言算法: flag=1; for(i=1;i<=n && flag;i++) { sum1=0; sum2=0; for(j=1;j<=n;j++) if(r[i][j]) sum1++; for(j=1;j<=n;j++) if(r[j][i]) sum2++; if(sum1%2==0 || sum2%2==0) flag=0; } 如果 flag 该有向图是欧拉图 (4)求出欧拉路的方法:欧拉路经过每条边一次且仅一次。可用回溯的方法求得所有欧拉路。 C语言算法: int count=0,cur=0,r[N][N]; // r[N][N]为图的邻接矩阵,cur为当前结点编号,count为欧拉路的数量。 int sequence[M];// sequence保留访问点的序列,M为图的边数 输入图信息; void try1(int k) //k表示边的序号 { int i,pre=cur; //j保留前一个点的位置,pre为前一结点的编号 for (i=0;i<N;i++) if (r[cur][i]) //当前第cur点到第i点连通 { //删除当前点与第i点的边,记下第k次到达点i,把第i个点设为当前点 r[cur][i]=0;cur=sequence[k]=i; if (k<M) try1(k+1); //试下一个点 else prt1();//经过了所有边,打印一个解 //上面条件不满足,说明当前点的出度为0,回溯,试下一位置 r[pre][i]=1;cur=pre; } }

大家在看

recommend-type

chessClock:一个简单的Arduino Chess Clock,带有3个按钮和LCD 240X320屏幕

弗洛伊斯国际象棋时钟 一个带有3个按钮和240X320 LCD屏幕的简单Arduino国际象棋时钟 这是隔离期间开发的一个简单的棋钟项目。主要灵感来自@naldin的 。我更改了他的代码,所以我只能使用三个按钮(暂停,黑白)来选择国际象棋比赛中最常用的时间设置,并在LCD屏幕上显示小时数。该项目目前处于停滞状态,因为我使用的Arduino Nano已损坏,我找不到新的。尽管项目运行正常,但您只需要正确地将LCD屏幕连接到相应的SPI引脚,并将按钮连接到所需的任何数字引脚即可。另外,我仍然需要在时钟上打印3D框或找到一个3D框使其播放。很快,我将更新此页面。
recommend-type

学堂云《信息检索与科技写作》单元测试考核答案

学堂云《信息检索与科技写作》单元测试考核答案 【对应博文见链接:】https://blog.csdn.net/m0_61712829/article/details/135173767?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22135173767%22%2C%22source%22%3A%22m0_61712829%22%7D
recommend-type

【蒙特卡洛模拟】这个项目旨在通过强化学习和蒙特卡洛模拟的结合,解决银行购买股票的最优策略和预期利润折现率的问题KL.zip

【蒙特卡洛模拟】这个项目旨在通过强化学习和蒙特卡洛模拟的结合,解决银行购买股票的最优策略和预期利润折现率的问题【KL】.zip
recommend-type

码垛机器人说明书

对于随机货盘来说,码垛机器人是唯一的选择。尽管如此,机器人装载也面临比较多的问题,如果要以较高的速度进行生产,将更加困难重重。一个处理随机装载的机器人码垛机需要特殊的软件,通过软件,机器人码垛机与生产线的其他部分相连接,这是个巨大的进步。
recommend-type

《智能调度集中系统暂行技术条件》.pdf

智能调度

最新推荐

recommend-type

基于OpenCV的人脸识别小程序.zip

【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

精选毕设项目-宅男社区.zip

精选毕设项目-宅男社区
recommend-type

精选毕设项目-扫描条形码.zip

精选毕设项目-扫描条形码
recommend-type

配网两阶段鲁棒优化调度模型 关键词:两阶段鲁棒优化,CCG算法,储能 仿真算例采用33节点,采用matlab+yalmip+cplex编写,两阶段模型采用CCG算法求解 模型中一阶段变量主要包括01

配网两阶段鲁棒优化调度模型 关键词:两阶段鲁棒优化,CCG算法,储能 仿真算例采用33节点,采用matlab+yalmip+cplex编写,两阶段模型采用CCG算法求解。 模型中一阶段变量主要包括01变量和无功优化变量,核心变量主要存在于二阶段,因此在叠加二阶段变量优化过程中更容易得到最优解,所以有限次迭代即得到收敛的结果。 模型以网损为目标,包括功率平衡、网络潮流、电压电流、蓄电池出力以及无功设备出力等约束。 复现《两阶段鲁棒优化的主动配电网动态无功优化》-熊壮壮,具体内容可自行下载了解。
recommend-type

comsol光栅仿真 计算复合波导光栅准BIC增强古斯汉森位移

comsol光栅仿真 计算复合波导光栅准BIC增强古斯汉森位移
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。