arima model resid
时间: 2023-11-08 20:05:59 浏览: 145
根据引用中的说明,ARIMA模型是用于预测时间序列的统计模型。它将非平稳时间序列转化为平稳时间序列,并建立模型来预测。ARIMA模型与ARMA模型的区别在于,ARMA模型适用于平稳时间序列,而ARIMA模型适用于非平稳时间序列,需要对时间序列进行差分处理使其平稳后再建立ARMA模型。引用中提到根据AIC/BIC原则,可以筛选出ARIMA模型的参数。而引用中描述了对ARIMA模型进行参数估计和检验的过程。根据这些引用的信息,可以得出ARIMA模型的残差(residuals)是ARIMA模型拟合后得到的模型的预测误差。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [ARIMA算法解析与Python实现](https://blog.csdn.net/fs01234/article/details/88914930)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
- *2* [ARIMA(p,d,q)模型原理及其实现 --------python](https://blog.csdn.net/weixin_49583390/article/details/121914303)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文