contact0 = s[8] contact1 = s[13] moving_s_base = 4 + 5 * moving_leg supporting_s_base = 4 + 5 * supporting_leg hip_targ = [None, None] # -0.8 .. +1.1 knee_targ = [None, None] # -0.6 .. +0.9 hip_todo = [0.0, 0.0] knee_todo = [0.0, 0.0]

时间: 2024-04-03 08:34:43 浏览: 12
这段代码中,通过获取状态s中对应的位置信息,分别得到了两条腿是否有接触(contact0, contact1)的状态。接下来,根据当前的动作,确定移动腿(moving_leg)和支撑腿(supporting_leg)的序号,计算出对应的位置信息的索引(moving_s_base, supporting_s_base)。然后,分别初始化了用于控制舵机的目标位置列表hip_targ和knee_targ。接着,初始化了用于计算控制力的列表hip_todo和knee_todo,初始值为0.0。
相关问题

if state == STAY_ON_ONE_LEG: hip_targ[moving_leg] = 1.1 knee_targ[moving_leg] = -0.6 supporting_knee_angle += 0.03 if s[2] > SPEED: supporting_knee_angle += 0.03 supporting_knee_angle = min(supporting_knee_angle, SUPPORT_KNEE_ANGLE) knee_targ[supporting_leg] = supporting_knee_angle if s[supporting_s_base + 0] < 0.10: # supporting leg is behind state = PUT_OTHER_DOWN if state == PUT_OTHER_DOWN: hip_targ[moving_leg] = +0.1 knee_targ[moving_leg] = SUPPORT_KNEE_ANGLE knee_targ[supporting_leg] = supporting_knee_angle if s[moving_s_base + 4]: state = PUSH_OFF supporting_knee_angle = min(s[moving_s_base + 2], SUPPORT_KNEE_ANGLE) if state == PUSH_OFF: knee_targ[moving_leg] = supporting_knee_angle knee_targ[supporting_leg] = +1.0 if s[supporting_s_base + 2] > 0.88 or s[2] > 1.2 * SPEED: state = STAY_ON_ONE_LEG moving_leg = 1 - moving_leg supporting_leg = 1 - moving_leg

这段代码是状态机的核心部分,根据当前的状态和动作来更新目标位置列表hip_targ和knee_targ。如果当前的状态是STAY_ON_ONE_LEG,说明机器人正在单腿支撑,此时需要将移动腿的hip_targ和knee_targ设为固定的目标位置,同时逐渐增加支撑腿的knee_targ,使其与地面接触的角度变大。如果速度超过一定阈值,还需要进一步增加支撑腿的knee_targ。当支撑腿的角度达到阈值SUPPORT_KNEE_ANGLE后,将移动到下一个状态PUT_OTHER_DOWN。在PUT_OTHER_DOWN状态下,需要将移动腿的hip_targ设为一个较小的值,同时将其knee_targ设为SUPPORT_KNEE_ANGLE,同时保持支撑腿的knee_targ不变。如果移动腿的脚部接触到地面,就转移到下一个状态PUSH_OFF。在PUSH_OFF状态下,需要将移动腿的knee_targ设为与支撑腿的角度相同,同时将支撑腿的knee_targ设为一个较大的值,使其离地面。如果支撑腿的膝盖高度达到一定阈值,或者速度超过一定阈值,就回到STAY_ON_ONE_LEG状态,同时切换移动腿和支撑腿的序号。

if __name__ == "__main__": # Heurisic: suboptimal, have no notion of balance. env = BipedalWalker() env.reset() steps = 0 total_reward = 0 a = np.array([0.0, 0.0, 0.0, 0.0]) STAY_ON_ONE_LEG, PUT_OTHER_DOWN, PUSH_OFF = 1, 2, 3 SPEED = 0.29 # Will fall forward on higher speed state = STAY_ON_ONE_LEG moving_leg = 0 supporting_leg = 1 - moving_leg SUPPORT_KNEE_ANGLE = +0.1 supporting_knee_angle = SUPPORT_KNEE_ANGLE

这段代码是用于测试BipedalWalker游戏(小人行走游戏)的,其中包含以下内容: 1. if __name__ == "__main__"::如果当前文件被作为独立的脚本运行,即没有被其他脚本引用,那么执行下面的代码。 2. env = BipedalWalker():创建一个BipedalWalker对象,即小人行走游戏的环境。 3. env.reset():重置游戏环境,以便开始新的游戏。 4. steps = 0:记录小人已经行走的步数,初始值为0。 5. total_reward = 0:记录小人已经获得的奖励值,初始值为0。 6. a = np.array([0.0, 0.0, 0.0, 0.0]):定义小人的行动向量,初始值为0。 7. STAY_ON_ONE_LEG, PUT_OTHER_DOWN, PUSH_OFF = 1, 2, 3:定义小人的行动状态,分别为“保持单腿站立”、“支撑另一条腿”和“向前跳跃”。 8. SPEED = 0.29:定义小人行走的速度,小于该速度时小人会向前倾。 9. state = STAY_ON_ONE_LEG:初始状态为保持单腿站立。 10. moving_leg = 0:初始时,左腿是运动的腿。 11. supporting_leg = 1 - moving_leg:初始时,右腿是支撑的腿。 12. SUPPORT_KNEE_ANGLE = +0.1:定义小人支撑腿的膝盖角度。 13. supporting_knee_angle = SUPPORT_KNEE_ANGLE:初始时,小人支撑腿的膝盖角度为SUPPORT_KNEE_ANGLE。 总的来说,这段代码是用于测试BipedalWalker游戏的,其中定义了小人的行动向量、行动状态、支撑腿的膝盖角度等参数。该测试代码可以帮助开发人员了解游戏环境和小人的行为规律,以便更好地开发和优化游戏算法和策略。

相关推荐

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。