TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; TIM_OCInitStructure.TIM_Pulse = Channel1Pulse; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;

时间: 2024-04-26 13:26:31 浏览: 19
这是一个 STM32 的定时器输出比较模式的初始化结构体,用于配置定时器输出的占空比、极性和空闲状态等参数。其中,TIM_OCMode_PWM2 表示使用 PWM 模式 2,TIM_OutputState_Enable 表示使能输出,TIM_OutputNState_Enable 表示使能反相输出,TIM_Pulse 表示输出脉冲的宽度,TIM_OCPolarity_Low 表示输出极性为低电平,TIM_OCNPolarity_High 表示反相输出极性为高电平,TIM_OCIdleState_Set 表示空闲状态下输出为设置状态,TIM_OCNIdleState_Reset 表示反相输出空闲状态下为复位状态。
相关问题

TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

`TIM_OCInitStructure.TIM_OCPolarity`用于配置定时器的输出比较极性。 `TIM_OCPolarity_High`表示输出比较的极性为高电平,也就是当定时器计数值小于比较值时,输出信号为高电平。 如果你想将输出比较极性配置为低电平,可以将`TIM_OCInitStructure.TIM_OCPolarity`设置为`TIM_OCPolarity_Low`。 例如: ```c TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 50; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; // 将输出比较极性设置为低电平 TIM_OC1Init(TIM2, &TIM_OCInitStructure); ``` 这样就将定时器的输出比较极性配置为低电平了。

TIM_TimeBaseStructure.TIM_Period =99; //???????????? TIM_TimeBaseStructure.TIM_Prescaler =36-1; //??TIM3???????? TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //???? TIM_TimeBaseStructure.TIM_ClockDivision=0; TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1;//???????:TIM???????? TIM_OCInitStructure.TIM_OutputNState=TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_High; TIM_OCInitStructure.TIM_Pulse=0;

这代码是用于配置STM32的定时器TIM3和其输出比较通道的初始化。 首先,TIM_TimeBaseStructure.TIM_Period = 99;`将定时器的计周期设置为99,表示时器将在计到99后重新开始计数。 下来,`TIM_TimeBaseStructure.TIM_Prescaler = 36-1;`设置定时器的预分频器值为36-1,这将将输入时钟分频为36,以满足所需的计数速度。 然后,`TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;`将定时器设置为向上计模式。 `TIM_TimeBaseStructure.TIM_ClockDivision=0;`将时钟分频设置为0,表示不进行额外的时钟分频。 最后,通过`TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);`将以上配置应用于TIM3定时器。 接下来,`TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1;`将输出比较模式设置为PWM模式1。 `TIM_OCInitStructure.TIM_OutputNState=TIM_OutputState_Enable;`启用输出比较通道的输出。 `TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_High;`设置输出极性为高电平。 `TIM_OCInitStructure.TIM_Pulse=0;`将脉冲值设置为0,表示初始情况下输出为低电平。 这段代码的目的是配置TIM3定时器和输出比较通道以实现PWM输出。具体的配置可能与你的蓝牙小车硬件和功能要求有关,可以根据具体情况进行调整。

相关推荐

帮我转换成HAL库 void TIM2_PWM_Output(float Duty , uint32_t Frequency) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; NVIC_InitTypeDef NVIC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); /* GPIOA clock enable */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_AFIO ,ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 ; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); /* Time base configuration */ TIM_TimeBaseStructure.TIM_Period = (1000000/Frequency)-1; //ARR = (TIM3 counter clock /Frequency)-1 TIM_TimeBaseStructure.TIM_Prescaler = 71; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); /* PWM1 Mode configuration: Channel3 */ TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = ((1000000/Frequency)-1)*Duty; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC3Init(TIM2, &TIM_OCInitStructure); TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable); TIM_ARRPreloadConfig(TIM2, ENABLE); /* TIM3 enable counter */ TIM_Cmd(TIM2, ENABLE); }

void TIM4_Init(u16 arr,u16 psc) { GPIO_InitTypeDef GPIO_Initstructure; TIM_TimeBaseInitTypeDef TIM_TimeBasestructure; TIM_ocInitTypeDef TIM_OCInitStructure; //TIM4/GPIOA/AFIO CLK enable RCC_APB1PeriphclockCmd (RCC_APBlPeriph_TIM4,ENABLE); Rcc_APB2PeriphclockCmd(Rcc_APB2Periph_GPIOB , ENABLE); Rcc_APB2PeriphClockCmd (RCC_APB2Periph_AFIO ,ENABLE); //set PB6(TIM4_CHl) PB7(TIM4_CH2) as AF output mode for PRM output GPIO_Initstructure.GPIO_Pin = GPIO_Pin_6 l GPIO_Pin_7; GPIO_Initstructure.GPIO_Mode = GPIo_Mode_AF_PP; GPIO_Initstructure.GPIo_Speed = GPIo_Speed_5OMHz; GPIO_Init(GPIOB,&GPIO_Initstructure); //TIM4 base config TIM_TimeBasestructure.TIM_Period = arr; TIM_TimeBasestructure.TIM_Prescaler = psc; TIM_TimeBasestructure.TIM_C1ockDivision = 0; TIM_TimeBasestructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit (TIM4,&TIM_TimeBasestructure) ; //PWM of TIM4_CHl config TIM_OCInitstructure.TIM_OCMode = TIM_OcMode_PWM1; TIM_OCInitstructure.TIM_Outputstate = TIM_Outputstate_Enable; TIM_OcInitstructure.TIM_Pulse = 0; TIM_OCInitstructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC1Init (TIM4,&TIM_OCInitStructure) ; TIM_OClpreloadConfig(TIM4,TIM_OCPreload_Enable); // PWM of TIM4_CH2 config TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWMl; TIM_OCInitstructure.TIM_Outputstate = TIM_Outputstate_Enable; TIM_OCInitStructure.TIM_Pulse =0; TIM_OCInitstructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC2Init (TIM4,&TIM_OCInitStructure) ; TIM_OC2PreloadConfig(TIM4,TIM_OCPreload_Enable) ; //TIM4 preload enable TIM_ARRPreloadconfig (TIM4,ENABLE); //MOE enable for advanced TIMl or TIM8 TIM_Ctr1PWMOutputs (TIM4,ENABLE); //TIM4 enable TIM_Cmd (TIM4,ENABLE);

GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE); //使能定时器3时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO, ENABLE); //使能GPIO外设和AFIO复用功能模块时钟 GPIO_PinRemapConfig(GPIO_FullRemap_TIM3, ENABLE);//Timer3完全重映射 //设置该引脚为复用输出功能 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7|GPIO_Pin_8|GPIO_Pin_9;//TIM_CH2 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;//复用推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOC, &GPIO_InitStructure);//初始化GPIO //初始化TIM3 TIM_TimeBaseStructure.TIM_Period = arr; //设置下一个更新事件装入活动的走动重装载寄存器周期的值 TIM_TimeBaseStructure.TIM_Prescaler = psc;//设置用来作为TIMx时钟频率除数的预分频值 TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分频:TDTS = Tck_tim TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//TIM向上输出模式 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);//根据TIM_TimeBaseStruct中指定的参数初始化TIMx的时间基数单位 //初始化TIM3_Channel2 PWM模式 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;//选择定时器模式:TIM脉宽调制模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//比较输出使能 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性高 TIM_OC1Init(TIM3, &TIM_OCInitStructure); TIM_OC1PreloadConfig(TIM3,TIM_OCPreload_Enable);//比较预装载 TIM_OC2Init(TIM3, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM3 OC2 TIM_OC2PreloadConfig(TIM3,TIM_OCPreload_Enable);//使能TIM3在CCR2上的预装载寄存器 TIM_OC4Init(TIM3, &TIM_OCInitStructure); //根据TIM_OCInitStruct中指定的参数初始化外设TIMx TIM_OC4PreloadConfig(TIM3, TIM_OCPreload_Enable);//使能TIMx在CCR4上的预装载寄存器 TIM_ARRPreloadConfig(TIM3,ENABLE);//自动重装载 TIM_Cmd(TIM3, ENABLE); //使能TIM3

以下程序为 实现PWM的主要程序。 //通用定时器1中断初始化,这里时钟若选择72M void TIM3_Int_Init(u16 arr,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); TIM_TimeBaseStructure.TIM_Period = arr; TIM_TimeBaseStructure.TIM_Prescaler =psc; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); TIM_Cmd(TIM3, ENABLE); } //TIM3的PWM输出初始化 void TIM3_PWM_Init(u16 arr,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; TIM_TimeBaseStructure.TIM_Period = arr; TIM_TimeBaseStructure.TIM_Prescaler =psc; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC2Init(TIM3, &TIM_OCInitStructure); TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable); TIM_Cmd(TIM3, ENABLE); } 请说明: (1) 若设置PWM频率为10K,则TIM3_PWM_Init( ) 如何设置形参? (2)若利用PA8,PA9,PA10 输出频率为10K,占空比分别为20%,35%,50%的脉冲信号(利用定时器1),请参考 函数TIM3_PWM_Init(u16 arr,u16 psc)和 调用函数TIM_SetCompare1( ),TIM_SetCompare2( ),TIM_SetCompare3( )来完成编程。

最新推荐

recommend-type

android手机应用源码Imsdroid语音视频通话源码.rar

android手机应用源码Imsdroid语音视频通话源码.rar
recommend-type

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx
recommend-type

JavaScript_超过100种语言的纯Javascript OCR.zip

JavaScript
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这