设n阶图G中有m 条边,每个结点的度数不是k的是k+1,若G中有小个k度顶点:Nk+1个k+1度顶点,则NK=
时间: 2024-05-28 14:13:23 浏览: 194
首先,根据握手定理,图G中所有顶点的度数和为2m。因为每个非k度顶点的度数都是k+1,所以有:
N(k+1)(k+1) + Nk(k) = 2m
又因为G中有Nk个k度顶点和N(k+1)个(k+1)度顶点,所以有:
Nk + N(k+1) = n
将上述两个式子代入握手定理得:
N(k+1)(k+1) + Nk(k) = 2m
Nk + N(k+1) = n
=> N(k+1)(k+1) + (n-Nk)(k+1-k) = 2m
=> N(k+1)(k+1) + (n-Nk) = 2m
=> N(k+1)(k+1) + n - Nk = 2m
=> N(k+1)(k+1) - Nk = 2m - n
由于每个顶点的度数都是非负整数,因此有:
Nk >= 0
N(k+1) >= 0
将上述不等式代入上面的式子得:
N(k+1)(k+1) - Nk = 2m - n
=> N(k+1)(k+1) >= 2m - n
=> Nk <= (n - 2m + n/(k+1)) / k
因为Nk是整数,所以有:
Nk <= floor((n - 2m + n/(k+1)) / k)
又因为NK = n - N(k+1),所以有:
NK = n - N(k+1) = n - (n-Nk) = Nk
综上所述:
NK = Nk <= floor((n - 2m + n/(k+1)) / k)
相关问题
2设口阶圈G中有m 条边,每个结点的度数不是k的是k+1,若G中有小个k度顶点:Nos 个k+1度顶点,则NK=
根据握手定理,对于一个无向图 G,其所有顶点的度数之和等于 2m,其中 m 为边数。设 G 中有 n 个顶点,则有以下方程成立:
n*k + Nos*(k-1) + NK*(k+1) = 2m
又因为 G 中有 NK 个 k 度顶点和 Nos 个 k+1 度顶点,所以 n = NK + Nos,代入上式得:
(NK + Nos)*k + Nos*(k-1) + NK*(k+1) = 2m
化简得:
NK = (2m - k*Nos)/(k+1)
因此,NK 的值为 (2m - k*Nos)/(k+1)。
用团顶点数改进的上界思想解答以下问题: 考虑最大团问题的子集空间树中第i层的一个结点x,i设MinDegree(x)是以结点x为根的子树中所有结点度数的最小值。 设x.u=min{x.cn+n-i+1,MinDegree(x)+1},依此xu的定义重写算法bbMaxClique
算法bbMaxClique的伪代码如下所示:
```
bbMaxClique(G):
bestClique = []
stack = [(G, [])]
while stack:
(graph, clique) = stack.pop()
if not graph:
if len(clique) > len(bestClique):
bestClique = clique
else:
# Choose a pivot vertex with maximum degree
pivot = max(graph, key=lambda v: len(graph[v]))
for vertex in graph[pivot]:
# Only consider vertices that have at least as many neighbors as the pivot
if vertex in graph and len(graph[vertex]) >= len(graph[pivot]):
# Update the degree sequence of the remaining vertices
neighbors = graph[vertex]
graph = {v: neighbors.intersection(graph[v]) for v in graph if v in neighbors}
# Add the chosen vertex to the clique and continue searching
stack.append((graph, clique + [vertex]))
return bestClique
```
我们可以根据上述的思想来改进bbMaxClique算法,具体的改进如下:
1. 在算法的开始,我们定义一个字典`min_degrees`来存储每个结点的MinDegree值。初始时,我们将所有结点的MinDegree值设为0。
2. 在算法的while循环中,在选择中心点时,我们可以选择MinDegree值最大的结点。
3. 选择了中心点后,我们可以按照以下方式更新该结点的x.u值:
```
x.u = min(x.cn + n - i + 1, min_degrees[x] + 1)
```
注意到这里的x.cn是指以x为中心点的团的大小,n是图G的结点数,i是当前子集树的层数。
4. 在算法的内部循环中,我们只考虑MinDegree值大于等于当前结点x.u的结点作为候选点。
```
candidates = [v for v in graph if min_degrees[v] >= x.u]
```
5. 在递归调用算法时,我们需要更新每个子树中结点的MinDegree值。具体地,对于每个子树中的结点v,我们可以按照以下方式更新它的MinDegree值:
```
min_degrees[v] = max(min_degrees[v], len(graph[v]) - 1)
```
注意到这里,我们将v的MinDegree值更新为它的邻居数减1,因为v被选中后,它的邻居都不能再被选中了。
下面是改进后的算法bbMaxClique的伪代码:
```
def bbMaxClique(G):
bestClique = []
stack = [(G, [], {v: 0 for v in G})]
n = len(G)
while stack:
(graph, clique, min_degrees) = stack.pop()
if not graph:
if len(clique) > len(bestClique):
bestClique = clique
else:
# Choose a pivot vertex with maximum MinDegree
pivot = max(graph, key=lambda v: min_degrees[v])
for vertex in [v for v in graph if min_degrees[v] >= min_degrees[pivot]]:
# Update the degree sequence of the remaining vertices
neighbors = graph[vertex]
graph = {v: neighbors.intersection(graph[v]) for v in graph if v in neighbors}
# Update the MinDegree of the remaining vertices
for v in graph:
min_degrees[v] = max(min_degrees[v], len(graph[v]) - 1)
# Update the MinDegree of the chosen vertex
min_degrees[vertex] = max(min_degrees[vertex], len(neighbors) - 1)
# Compute xu and add the chosen vertex to the clique
i = n - len(graph) + len(clique) + 1
xu = min(len(clique) + len(neighbors) + 1, min_degrees[pivot] + 1, len(graph) + i)
stack.append((graph, clique + [vertex], min_degrees))
return bestClique
```
以上就是用团顶点数改进的上界思想来改进bbMaxClique算法的具体步骤。
阅读全文