set xDamp 0.05; set nEigenI 1; set nEigenJ 2; set lambdaN [eigen [expr $nEigenJ]]; set lambdaI [lindex $lambdaN [expr $nEigenI-1]]; set lambdaJ [lindex $lambdaN [expr $nEigenJ-1]]; set omegaI [expr pow($lambdaI,0.5)]; set omegaJ [expr pow($lambdaJ,0.5)]; set alphaM [expr $xDamp*(2*$omegaI*$omegaJ)/($omegaI+$omegaJ)]; set betaKcurr [expr 2.*$xDamp/($omegaI+$omegaJ)]; rayleigh $alphaM $betaKcurr 0 0 puts $alphaM puts $betaKcurr set iGMfile "DM1X.txt"; set iGMfact "1"; set dt 0.02; set dispSeries1 "Series -dt $dt -filePath $iGMfile -factor $iGMfact"; set iGMfile "DM1X.txt"; set iGMfact "1"; set dt 0.02; set dispSeries2 "Series -dt $dt -filePath $iGMfile -factor $iGMfact"; pattern MultiSupport 1 { groundMotion 1 Plain -disp $dispSeries1 imposedMotion 1 1 1 imposedMotion 3 1 1 } pattern MultiSupport 2 { groundMotion 2 Plain -disp $dispSeries2 imposedMotion 2 1 2 imposedMotion 4 1 2 } constraints Transformation; numberer Plain; system SparseSPD; test EnergyIncr 1.0e-4 200; algorithm Newton integrator Newmark 0.5 0.25 analysis Transient analyze 1000 0.02

时间: 2024-03-29 07:37:34 浏览: 120
这是一段Tcl语言的脚本,用于进行地震工程领域的结构动力学分析。这段脚本中包含了一些参数的设定,如阻尼比、振型数、特征值、角频率等;还包括了地震波数据的导入、多支座约束模式的定义、结构约束的设置等内容。最后使用Newton算法和Newmark积分器进行分析,得到1000个时间步的响应结果。这段脚本是一个完整的分析流程,但具体的分析对象和参数需要根据实际情况进行调整。
相关问题

void Trajectory::predict_box( uint idx_duration, std::vector<Box>& vec_box, std::vector<Eigen::MatrixXf, Eigen::aligned_allocatorEigen::MatrixXf>& vec_cova, bool& is_replay_frame) { vec_box.clear(); vec_cova.clear(); if (is_replay_frame) { for (auto iter = map_current_box_.begin(); iter != map_current_box_.end(); ++iter) { Destroy(iter->second.track_id()); } m_track_start_.Clear_All(); NU = 0; is_replay_frame = false; } Eigen::MatrixXf F_temp = F_; F_temp(0, 1) = idx_duration * F_(0, 1); F_temp(2, 3) = idx_duration * F_(2, 3); F_temp(4, 5) = idx_duration * F_(4, 5); uint64_t track_id; Eigen::Matrix<float, 6, 1> state_lidar; Eigen::Matrix<float, 6, 6> P_kkminus1; Eigen::Matrix3f S_temp; for (auto beg = map_current_box_.begin(); beg != map_current_box_.end(); ++beg) { float t = (fabs(0.1 - beg->second.frame_duration()) > 0.05) ? 0.1 : 0.2 - beg->second.frame_duration(); F_temp(0, 1) = t; F_temp(2, 3) = t; F_temp(4, 5) = t; // uint64_t timestamp_new = beg->second.timestamp() + uint(10.0 * t * NANO_FRAME); track_id = beg->first; state_lidar = F_temp * map_lidar_state_.at(track_id); P_kkminus1 = F_temp * map_lidar_cova_.at(track_id) * F_temp.transpose() + Q_lidar_; S_temp = H_ * P_kkminus1 * H_.transpose() + R_lidar_; float psi_new = (1 - P_D_ * P_G_) * beg->second.psi() / (1 - P_D_ * P_G_ * beg->second.psi()); Box bbox = beg->second; bbox.set_psi(psi_new); // bbox.set_timestamp(timestamp_new); bbox.set_position_x(state_lidar(0)); bbox.set_position_y(state_lidar(2)); bbox.set_position_z(state_lidar(4)); bbox.set_speed_x(state_lidar(1)); bbox.set_speed_y(state_lidar(3)); bbox.set_speed_z(state_lidar(5)); vec_box.emplace_back(bbox); vec_cova.emplace_back(S_temp); } AINFO << "Finish predict with duration frame num: " << idx_duration; } 代码解读

这段代码是一个名为Trajectory的类中的predict_box函数。函数接受一个时间段的索引(idx_duration),一个存储Box对象的向量(vec_box),一个存储Eigen矩阵的向量(vec_cova),以及一个布尔变量(is_replay_frame)作为参数。 首先,函数清空vec_box和vec_cova两个向量。 然后,如果is_replay_frame为true,则遍历map_current_box_中的元素,并销毁每个元素的track_id。然后清空m_track_start_和NU,并将is_replay_frame设置为false。 接下来,创建一个临时的F_temp矩阵,并将其与原始的F_矩阵进行乘法操作,并将其中的某些元素乘以idx_duration。这是为了根据时间段来预测box的状态。 然后,遍历map_current_box_中的元素。对于每个元素,计算一个临时变量t,并根据t更新F_temp矩阵。然后使用F_temp和map_lidar_state_中相应的track_id来计算state_lidar矩阵。接着,使用F_temp、map_lidar_cova_中相应的track_id和Q_lidar_来计算P_kkminus1矩阵。再使用H_、P_kkminus1和R_lidar_来计算S_temp矩阵。 之后,根据一些计算得到的值,更新beg->second中的一些属性,并将其加入vec_box中。同时,将S_temp加入vec_cova中。 最后,输出一条日志信息,表示完成了使用给定时间段进行预测。 请注意,这只是对代码进行的初步解读,具体实现可能还涉及其他变量和函数。

import cv2 import numpy as np import matplotlib.pyplot as plt image_path = './Lenna.jpg' image = cv2.imread(image_path) num_row, num_col, num_ch = image.shape # image channels are in BGR B = image[:, :, 0] G = image[:, :, 1] R = image[:, :, 2] # Display the point cloud of the pixels in the coordinate system with RGB as the axis # Construct X # CODE HERE # Decomment the following lines # fig = plt.figure('point cloud of the pixels in the RGB coordinate system', figsize=(5.5, 4.5)) # ax = fig.add_subplot(111, projection='3d') # ax.plot3D(X[0, :], X[1, :], X[2, :], '.') # ax.set_xlabel('R') # ax.set_ylabel('G') # ax.set_zlabel('B') # ax.axis('equal') # plt.show() # Decentralization # CODE HERE # Diagonalization # CODE HERE # Sort the eigen values with the eigen vectors # CODE HERE # Construct the projection to the new basis with the eigen vectors and perform the projection # CODE HERE # Display the color image with the 3 principle conponents in 2 lines and 2 columns # Decommen

t the following lines ``` # fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(8, 8)) # for i, ax in enumerate(axs.flat): # ax.imshow(X_reconstructed[:, :, i]) # ax.set_title('PC ' + str(i+1)) # ax.axis('off') # plt.show() ```
阅读全文

相关推荐

for (int camera_index = 0; camera_index < this->m_safe_camera_list.size(); ++camera_index) { camera* cam = &(this->m_safe_camera_list[camera_index]); if (cam->m_is_exter_calib_check_mark == true) { // as a Internal reference K of the camera, the K-1 is : // 1/ax 0 -px/ax // 0 1/ay -py/ay // 0 0 1 Eigen::Matrix3f invk; invk.setIdentity(); invk(0, 0) = 1.0 / cam->m_inter_calib(0, 0); invk(0, 2) = -1.0 * cam->m_inter_calib(0, 2) / cam->m_inter_calib(0, 0); invk(1, 1) = 1.0 / cam->m_inter_calib(1, 1); invk(1, 2) = -1.0 * cam->m_inter_calib(1, 2) / cam->m_inter_calib(1, 1); Eigen::Vector3f tmp_t_verts = cam->m_exter_calib.topRightCorner(3, 1); Eigen::Matrix3f tmp_inv_r_mat= cam->m_exter_calib.topLeftCorner(3, 3).transpose(); Eigen::Vector3f tmp_root_point = -tmp_inv_r_mat * tmp_t_verts; for (int pose_index = 0; pose_index < cam->m_2D_pose_list.size(); ++pose_index) { Eigen::MatrixXf pose = cam->m_2D_pose_list[pose_index]; // check the pose's Confidence, if all the joints's confidiance is smaller than the gain, drop out float confidence = pose.row(2).maxCoeff(); if (confidence < this->m_joint_confidence_gian) { continue; }; my_radials tmpradials; tmpradials.m_2d_pose = pose; tmpradials.m_root_point = tmp_root_point; tmpradials.m_radials_points = (invk * pose.topRows(2).colwise().homogeneous()).colwise().normalized(); tmpradials.m_radials_points = tmp_inv_r_mat * tmpradials.m_radials_points; tmpradials.m_3d_pose_ID = -1; tmpradials.m_camera_index = camera_index; tmpradials.m_poes_index = pose_index; tmpradials.m_pose_confidence = pose.row(2).leftCols(7).sum(); this->m_3d_radials.push_back(tmpradials); } } }

最新推荐

recommend-type

C++ Eigen库计算矩阵特征值及特征向量

C++ Eigen库计算矩阵特征值及特征向量 Eigen库是C++中的一个开源数学库,广泛应用于矩阵运算、线性代数、优化问题等领域。今天,我们将重点介绍Eigen库在计算矩阵特征值及特征向量方面的应用。 什么是矩阵特征值和...
recommend-type

C++调用Eigen库技巧的直观理解.docx

4. 矩阵赋值:Eigen库提供了多种矩阵赋值方法,例如`A &lt;&lt; 1, 2, 3, 4, 5, 6, 7, 8, 9;`,用于将矩阵元素赋值。 5. 矩阵操作:Eigen库提供了多种矩阵操作方法,例如快速生成常用矩阵和向量、矩阵转置、共轭和共轭...
recommend-type

MiniGui业务开发基础培训-htk

MiniGui业务开发基础培训-htk
recommend-type

BottleJS快速入门:演示JavaScript依赖注入优势

资源摘要信息:"BottleJS是一个轻量级的依赖项注入容器,用于JavaScript项目中,旨在减少导入依赖文件的数量并优化代码结构。该项目展示BottleJS在前后端的应用,并通过REST API演示其功能。" BottleJS Playgound 概述: BottleJS Playgound 是一个旨在演示如何在JavaScript项目中应用BottleJS的项目。BottleJS被描述为JavaScript世界中的Autofac,它是依赖项注入(DI)容器的一种实现,用于管理对象的创建和生命周期。 依赖项注入(DI)的基本概念: 依赖项注入是一种设计模式,允许将对象的依赖关系从其创建和维护的代码中分离出来。通过这种方式,对象不会直接负责创建或查找其依赖项,而是由外部容器(如BottleJS)来提供这些依赖项。这样做的好处是降低了模块间的耦合,提高了代码的可测试性和可维护性。 BottleJS 的主要特点: - 轻量级:BottleJS的设计目标是尽可能简洁,不引入不必要的复杂性。 - 易于使用:通过定义服务和依赖关系,BottleJS使得开发者能够轻松地管理大型项目中的依赖关系。 - 适合前后端:虽然BottleJS最初可能是为前端设计的,但它也适用于后端JavaScript项目,如Node.js应用程序。 项目结构说明: 该仓库的src目录下包含两个子目录:sans-bottle和bottle。 - sans-bottle目录展示了传统的方式,即直接导入依赖并手动协调各个部分之间的依赖关系。 - bottle目录则使用了BottleJS来管理依赖关系,其中bottle.js文件负责定义服务和依赖关系,为项目提供一个集中的依赖关系源。 REST API 端点演示: 为了演示BottleJS的功能,该项目实现了几个简单的REST API端点。 - GET /users:获取用户列表。 - GET /users/{id}:通过给定的ID(范围0-11)获取特定用户信息。 主要区别在用户路由文件: 该演示的亮点在于用户路由文件中,通过BottleJS实现依赖关系的注入,我们可以看到代码的组织和结构比传统方式更加清晰和简洁。 BottleJS 和其他依赖项注入容器的比较: - BottleJS相比其他依赖项注入容器如InversifyJS等,可能更轻量级,专注于提供基础的依赖项管理和注入功能。 - 它的设计更加直接,易于理解和使用,尤其适合小型至中型的项目。 - 对于需要高度解耦和模块化的大规模应用,可能需要考虑BottleJS以外的解决方案,以提供更多的功能和灵活性。 在JavaScript项目中应用依赖项注入的优势: - 可维护性:通过集中管理依赖关系,可以更容易地理解和修改应用的结构。 - 可测试性:依赖项的注入使得创建用于测试的mock依赖关系变得简单,从而方便单元测试的编写。 - 模块化:依赖项注入鼓励了更好的模块化实践,因为模块不需关心依赖的来源,只需负责实现其定义的接口。 - 解耦:模块之间的依赖关系被清晰地定义和管理,减少了直接耦合。 总结: BottleJS Playgound 项目提供了一个生动的案例,说明了如何在JavaScript项目中利用依赖项注入模式改善代码质量。通过该项目,开发者可以更深入地了解BottleJS的工作原理,以及如何将这一工具应用于自己的项目中,从而提高代码的可维护性、可测试性和模块化程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【版本控制】:R语言项目中Git与GitHub的高效应用

![【版本控制】:R语言项目中Git与GitHub的高效应用](https://opengraph.githubassets.com/2abf032294b9f2a415ddea58f5fde6fcb018b57c719dfc371bf792c251943984/isaacs/github/issues/37) # 1. 版本控制与R语言的融合 在信息技术飞速发展的今天,版本控制已成为软件开发和数据分析中不可或缺的环节。特别是对于数据科学的主流语言R语言,版本控制不仅帮助我们追踪数据处理的历史,还加强了代码共享与协作开发的效率。R语言与版本控制系统的融合,特别是与Git的结合使用,为R语言项
recommend-type

RT-DETR如何实现在实时目标检测中既保持精度又降低计算成本?请提供其技术实现的详细说明。

为了理解RT-DETR如何在实时目标检测中保持精度并降低计算成本,我们必须深入研究其架构优化和技术细节。RT-DETR通过融合CNN与Transformer的优势,提出了一种混合编码器结构,这种结构采用了尺度内交互(AIFI)和跨尺度融合(CCFM)策略来提取和融合多尺度图像特征,这些特征能够提供丰富的视觉上下文信息,从而提升了模型的检测精度。 参考资源链接:[RT-DETR:实时目标检测中的新胜者](https://wenku.csdn.net/doc/1ehyj4a8z2?spm=1055.2569.3001.10343) 在编码器阶段,RT-DETR使用主干网络提取图像特征,然后通过
recommend-type

vConsole插件使用教程:输出与复制日志文件

资源摘要信息:"vconsole-outputlog-plugin是一个JavaScript插件,它能够在vConsole环境中输出日志文件,并且支持将日志复制到剪贴板或下载。vConsole是一个轻量级、可扩展的前端控制台,通常用于移动端网页的调试。该插件的安装依赖于npm,即Node.js的包管理工具。安装完成后,通过引入vConsole和vConsoleOutputLogsPlugin来初始化插件,之后即可通过vConsole输出的console打印信息进行日志的复制或下载操作。这在进行移动端调试时特别有用,可以帮助开发者快速获取和分享调试信息。" 知识点详细说明: 1. vConsole环境: vConsole是一个专为移动设备设计的前端调试工具。它模拟了桌面浏览器的控制台,并添加了网络请求、元素选择、存储查看等功能。vConsole可以独立于原生控制台使用,提供了一个更为便捷的方式来监控和调试Web页面。 2. 日志输出插件: vconsole-outputlog-plugin是一个扩展插件,它增强了vConsole的功能,使得开发者不仅能够在vConsole中查看日志,还能将这些日志方便地输出、复制和下载。这样的功能在移动设备上尤为有用,因为移动设备的控制台通常不易于使用。 3. npm安装: npm(Node Package Manager)是Node.js的包管理器,它允许用户下载、安装、管理各种Node.js的包或库。通过npm可以轻松地安装vconsole-outputlog-plugin插件,只需在命令行执行`npm install vconsole-outputlog-plugin`即可。 4. 插件引入和使用: - 首先创建一个vConsole实例对象。 - 然后创建vConsoleOutputLogsPlugin对象,它需要一个vConsole实例作为参数。 - 使用vConsole对象的实例,就可以在其中执行console命令,将日志信息输出到vConsole中。 - 插件随后能够捕获这些日志信息,并提供复制到剪贴板或下载的功能。 5. 日志操作: - 复制到剪贴板:在vConsole界面中,通常会有“复制”按钮,点击即可将日志信息复制到剪贴板,开发者可以粘贴到其他地方进行进一步分析或分享。 - 下载日志文件:在某些情况下,可能需要将日志信息保存为文件,以便离线查看或作为报告的一部分。vconsole-outputlog-plugin提供了将日志保存为文件并下载的功能。 6. JavaScript标签: 该插件是使用JavaScript编写的,因此它与JavaScript紧密相关。JavaScript是一种脚本语言,广泛用于网页的交互式内容开发。此插件的开发和使用都需要一定的JavaScript知识,包括对ES6(ECMAScript 2015)版本规范的理解和应用。 7. 压缩包子文件: vconsole-outputlog-plugin-main文件名可能是指该插件的压缩包或分发版本,通常包含插件的源代码、文档和可能的配置文件。开发者可以通过该文件名在项目中正确地引用和使用插件。 通过掌握这些知识点,开发者可以有效地在vConsole环境中使用vconsole-outputlog-plugin插件,提高移动端网页的调试效率和体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【自然语言处理】:R语言文本挖掘与情感分析入门指南

![【自然语言处理】:R语言文本挖掘与情感分析入门指南](https://wisdomml.in/wp-content/uploads/2022/08/tokenizer-1024x512.jpg) # 1. 自然语言处理和R语言基础 自然语言处理(NLP)是计算机科学和人工智能领域的一个分支,旨在让计算机能够理解人类语言。随着大数据时代的到来,NLP在文本分析、信息检索、语音识别等方面的应用变得越来越广泛。R语言作为一种开源的统计编程语言,具有强大的数据处理和可视化功能,它在NLP领域的应用也越来越受到重视。本章将带领读者了解自然语言处理的基础知识,以及R语言在处理语言数据时的基本语法和功