low precision training 的代码
时间: 2023-08-09 17:06:21 浏览: 84
练习的代码
下面是一个使用 PyTorch 实现的 low precision training 的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
# 定义一个使用半精度浮点数的模型
class LowPrecisionModel(nn.Module):
def __init__(self):
super(LowPrecisionModel, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = x.view(-1, 784)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
return x
# 定义一个使用半精度浮点数的优化器
class LowPrecisionOptimizer(optim.SGD):
def __init__(self, params, lr=0.01, momentum=0.9, weight_decay=0, nesterov=False):
super(LowPrecisionOptimizer, self).__init__(params, lr=lr, momentum=momentum, weight_decay=weight_decay, nesterov=nesterov)
def step(self, closure=None):
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
p.data = p.data.half()
grad = grad.half()
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(p.data)
buf = state['momentum_buffer']
buf.mul_(group['momentum']).add_(grad)
if group['nesterov']:
grad = grad.add(group['momentum'] * buf)
else:
grad = buf
p.data.add_(-group['lr'], grad)
return loss
# 加载数据集
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('data', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=64, shuffle=True)
# 初始化模型和优化器
model = LowPrecisionModel()
optimizer = LowPrecisionOptimizer(model.parameters(), lr=0.01)
# 训练模型
for epoch in range(10):
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = nn.functional.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data.item()))
```
在这个示例代码中,我们定义了一个名为 `LowPrecisionModel` 的模型,它使用半精度浮点数进行计算。我们还定义了一个名为 `LowPrecisionOptimizer` 的优化器,它可以将模型参数和梯度转换为半精度浮点数进行计算。在训练过程中,我们使用 `LowPrecisionOptimizer` 优化器来更新模型参数,以达到低精度训练的效果。
阅读全文