def forward(self, x):#网络的整体的结构 residual = x out = self.relu(self.input(x))#增加通道数 out = self.residual_layer(out)#通过18层 out = self.output(out)#输出,降通道数 out = torch.add(out, residual)#做了一个残差连接 return out

时间: 2024-03-29 21:34:30 浏览: 10
这个函数是一个 PyTorch 模型的前向传播函数,它接收一个输入张量 `x`,并返回一个输出张量。 这个模型的整体结构包括三个部分:输入层、残差层和输出层。在输入层中,先通过 `self.input(x)` 将输入张量 `x` 放到一个卷积层中进行卷积操作,然后通过 ReLU 激活函数 `self.relu()` 进行激活。在残差层中,通过 `self.residual_layer(out)` 将输入张量 `out` 传递给一个由多个卷积层组成的序列,这个序列的作用是提取特征。在输出层中,将残差层的输出经过一个卷积层降低通道数,从而得到最终的输出结果。最后,使用 `torch.add()` 将残差层的输出 `out` 与输入张量 `x` 相加,形成一个残差连接。 总的来说,这个模型的结构是一个非常经典的残差网络结构,可以用于图像分类、目标检测等任务。
相关问题

class Conv_ReLU_Block(nn.Module):#定义了ConvReLU()类,继承了nn.Module父类。 def __init__(self): super(Conv_ReLU_Block, self).__init__() self.conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)#定义了对象变量self.conv,属性是{nn.Conv2d()}对象,实际上self.conv是{nn.Conv2d()}类的实例化,实例化时需要参数。 self.relu = nn.ReLU(inplace=True) def forward(self, x):#定义了forward()方法,对输入进行操作 return self.relu(self.conv(x))#卷积和激活的一个框,下次可以直接调用 # x = self.conv(x)实际上为x = self.conv.forward(x),调用了nn.Conv2d()的forward()函数,由于大家都继承了nn.Module父类,根据nn.Module的使用方法,.forward()不写,直接写object(input) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.residual_layer = self.make_layer(Conv_ReLU_Block, 18)#调用Conv_ReLU_Block,重复18个Conv_ReLU_Block模块 self.input = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)#通道层放大 self.output = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=3, stride=1, padding=1, bias=False)#通道层缩小 self.relu = nn.ReLU(inplace=True)#19-22初始化网络层 for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, sqrt(2. / n)) def make_layer(self, block, num_of_layer):#把Conv_ReLU_Block做一个循环,封装在 layers = [] for _ in range(num_of_layer): layers.append(block()) return nn.Sequential(*layers) def forward(self, x):#网络的整体的结构 residual = x out = self.relu(self.input(x))#增加通道数 out = self.residual_layer(out)#通过18层 out = self.output(out)#输出,降通道数 out = torch.add(out, residual)#做了一个残差连接 return out

这段代码定义了两个类:`Conv_ReLU_Block` 和 `Net`。 `Conv_ReLU_Block` 类继承了 PyTorch 中的 `nn.Module`,表示它是一个可训练的模型组件。它的初始化函数中定义了一个卷积层 `self.conv` 和一个 ReLU 激活函数 `self.relu`。在 `forward` 方法中,将输入张量 `x` 传递给 `self.conv` 进行卷积操作,然后将卷积结果传递给 `self.relu` 进行激活,并返回激活结果。 `Net` 类同样继承了 `nn.Module`,它的初始化函数中定义了三个模型组件:`self.input`、`self.output` 和 `self.residual_layer`。其中,`self.input` 和 `self.output` 分别是输入层和输出层的卷积层,`self.residual_layer` 是一个由多个 `Conv_ReLU_Block` 组成的序列,用于提取特征。在初始化函数中还使用 `self.modules()` 遍历模型中的所有组件,并对所有卷积层进行了权重初始化。 `Net` 类中还定义了一个辅助函数 `make_layer`,用于重复构建一个由多个 `Conv_ReLU_Block` 组成的序列。在 `forward` 方法中,将输入张量 `x` 传递给 `self.input` 进行卷积操作,然后将卷积结果传递给 `self.residual_layer` 进行特征提取,并经过 `self.output` 进行输出。最后,使用 `torch.add()` 将输入张量 `x` 与输出结果相加,形成一个残差连接,并返回最终的输出张量。

class Partial_conv3(nn.Module): def __init__(self, dim, n_div, forward): super().__init__() self.dim_conv3 = dim // n_div self.dim_untouched = dim - self.dim_conv3 self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False) self.global_pool = GlobalAvgPool2d() if forward == 'slicing': self.forward = self.forward_slicing elif forward == 'split_cat': self.forward = self.forward_split_cat else: raise NotImplementedError def forward_slicing(self, x: Tensor) -> Tensor: # only for inference x = x.clone() # !!! Keep the original input intact for the residual connection later x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :]) return x def forward_split_cat(self, x: Tensor) -> Tensor: x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1) x1 = self.partial_conv3(x1) x1 = self.global_pool(x1) x = torch.cat((x1, x2), 1) return x在这段代码中插入全局平均池化做通道增强的模块

你可以在forward_slicing和forward_split_cat的输出结果之前加入一个全局平均池化层进行通道增强,代码如下: ``` class Partial_conv3(nn.Module): def __init__(self, dim, n_div, forward): super().__init__() self.dim_conv3 = dim // n_div self.dim_untouched = dim - self.dim_conv3 self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False) self.global_pool = GlobalAvgPool2d() self.channel_enhance = nn.Sequential( nn.Conv2d(dim, dim, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(dim), nn.ReLU(inplace=True), self.global_pool ) if forward == 'slicing': self.forward = self.forward_slicing elif forward == 'split_cat': self.forward = self.forward_split_cat else: raise NotImplementedError def forward_slicing(self, x: Tensor) -> Tensor: # only for inference x = x.clone() # !!! Keep the original input intact for the residual connection later x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :]) x = self.channel_enhance(x) return x def forward_split_cat(self, x: Tensor) -> Tensor: x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1) x1 = self.partial_conv3(x1) x1 = self.channel_enhance(x1) x = torch.cat((x1, x2), 1) return x ``` 这里使用了一个nn.Sequential模块,包含了一个1x1的卷积层、BatchNorm层、ReLU激活层和全局平均池化层,对输入的特征图进行通道增强,从而提高模型的性能。在forward_slicing和forward_split_cat的输出结果之前,将输入特征图通过这个通道增强模块之后再输出。

相关推荐

class ResidualBlock(nn.Module): def init(self, in_channels, out_channels, dilation): super(ResidualBlock, self).init() self.conv = nn.Sequential( nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU(), nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU() ) self.attention = nn.Sequential( nn.Conv1d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.downsample = nn.Conv1d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None def forward(self, x): residual = x out = self.conv(x) attention = self.attention(out) out = out * attention if self.downsample: residual = self.downsample(residual) out += residual return out class VMD_TCN(nn.Module): def init(self, input_size, output_size, n_k=1, num_channels=16, dropout=0.2): super(VMD_TCN, self).init() self.input_size = input_size self.nk = n_k if isinstance(num_channels, int): num_channels = [num_channels*(2**i) for i in range(4)] self.layers = nn.ModuleList() self.layers.append(nn.utils.weight_norm(nn.Conv1d(input_size, num_channels[0], kernel_size=1))) for i in range(len(num_channels)): dilation_size = 2 ** i in_channels = num_channels[i-1] if i > 0 else num_channels[0] out_channels = num_channels[i] self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size)) self.pool = nn.AdaptiveMaxPool1d(1) self.fc = nn.Linear(num_channels[-1], output_size) self.w = nn.Sequential(nn.Conv1d(num_channels[-1], num_channels[-1], kernel_size=1), nn.Sigmoid()) # 特征融合 门控系统 # self.fc1 = nn.Linear(output_size * (n_k + 1), output_size) # 全部融合 self.fc1 = nn.Linear(output_size * 2, output_size) # 只选择其中两个融合 self.dropout = nn.Dropout(dropout) # self.weight_fc = nn.Linear(num_channels[-1] * (n_k + 1), n_k + 1) # 置信度系数,对各个结果加权平均 软投票思路 def vmd(self, x): x_imfs = [] signal = np.array(x).flatten() # flatten()必须加上 否则最后一个batch报错size不匹配! u, u_hat, omega = VMD(signal, alpha=512, tau=0, K=self.nk, DC=0, init=1, tol=1e-7) for i in range(u.shape[0]): imf = torch.tensor(u[i], dtype=torch.float32) imf = imf.reshape(-1, 1, self.input_size) x_imfs.append(imf) x_imfs.append(x) return x_imfs def forward(self, x): x_imfs = self.vmd(x) total_out = [] # for data in x_imfs: for data in [x_imfs[0], x_imfs[-1]]: out = data.transpose(1, 2) for layer in self.layers: out = layer(out) out = self.pool(out) # torch.Size([96, 56, 1]) w = self.w(out) out = w * out # torch.Size([96, 56, 1]) out = out.view(out.size(0), -1) out = self.dropout(out) out = self.fc(out) total_out.append(out) total_out = torch.cat(total_out, dim=1) # 考虑w1total_out[0]+ w2total_out[1],在第一维,权重相加得到最终结果,不用cat total_out = self.dropout(total_out) output = self.fc1(total_out) return output优化代码

最新推荐

recommend-type

基于Matlab的kohonen网络的聚类算法-网络入侵聚类

【作品名称】:基于Matlab的kohonen网络的聚类算法—网络入侵聚类 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:基于Matlab的kohonen网络的聚类算法—网络入侵聚类
recommend-type

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节 线性代数的核心问题是求解方程组。这些方程都是线性的,即未知数仅与数相乘——我们绝不会 遇见 x 乘以 y。我们的第一个线性方程组较小。接下来你来看看它引申出多远: 两个方程 两个未知数 x − 2y = 1 3x + 2y = 11 (1) 我们一次从一个行开始。第一个方程 x − 2y = 1 得出了 xy 平面的一条直线。由于点 x = 1, y = 0 解 出该方程,因此它在这条直线上。因为 3 − 2 = 1,所以点 x = 3, y = 1 也在这条直线上。若我们选择 x = 101,那我们求出 y = 50。 这条特定直线的斜率是 12,是因为当 x 变化 2 时 y 增加 1。斜率在微积分中很重要,然而这是线 性代数! 图 2.1 将展示第一条直线 x − 2y = 1。此“行图”中的第二条直线来自第二个方程 3x + 2y = 11。你 不能错过两条线的交点 x = 3, y = 1。点 (3, 1) 位于两条线上并且解出两个方程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

识别MATLAB微分方程求解中的混沌行为:分析非线性方程混沌行为的实用技巧

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程是描述物理、工程和金融等领域中动态系统的数学模型。MATLAB提供了强大的工具来求解微分方程,包括内置求解器和自定义函数
recommend-type

physon如何做ERP系统

作为一个AI语言模型,我可以给您提供一些基本的建议和思路: 1.明确需求和目标:在开始开发ERP系统之前,需要明确您的业务需求和目标,了解您的业务流程、流程数据、员工角色和权限、财务管理等方面的要求,这样才能更好的设计和开发ERP系统。 2.选择技术框架和开发工具:选择合适的技术框架和开发工具是ERP系统开发的关键。选择一种流行的技术框架和工具可以提高开发效率和质量。 3.设计数据库:ERP系统需要一个功能强大的数据库来存储数据。设计数据库需要考虑数据的完整性、安全性和可扩展性。 4.设计系统架构:系统架构是ERP系统的骨架,需要考虑系统的可扩展性、可维护性和性能。 5.开发和测试:
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

探索MATLAB微分方程求解中的分岔分析:揭示方程动态行为的秘密

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程在科学、工程和金融等领域有着广泛的应用。MATLAB作为一种强大的数值计算软件,提供了丰富的微分方程求解工具。本章将概述
recommend-type

ic验证工作中如何在平台中加入发数的总数?

在进行IC验证工作时,可以通过以下步骤在平台中加入发数的总数: 1. 打开IC验证工具(如Cadence Virtuoso)并打开对应的设计文件。 2. 在设计文件中选择需要计算发数的部分电路或模块。 3. 在IC验证工具中打开时序分析工具(如Cadence Tempus)。 4. 在时序分析工具中设置好时钟频率、时钟周期等参数。 5. 执行时序分析,生成时序报告。 6. 在时序报告中查找发数统计信息,将其记录下来。 7. 将发数统计信息添加到平台中,以便在之后的仿真或验证中使用。 需要注意的是,发数统计信息可能因为设计文件的不同而有所差异,需要根据实际情况进行调整和计算。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。