详细解释:// 1. get camera intrinsic and pose base::BaseCameraModelPtr camera_model = QueryCameraModel(camera); if (camera_model == nullptr) { AERROR << "Failed to get camera model for " << camera->GetSensorId(); return distance; } Eigen::Matrix4d world2camera_pose; if (!QueryWorld2CameraPose(camera, &world2camera_pose)) { AERROR << "Failed to query camera pose"; return distance; } Eigen::Matrix4d lidar2world_pose; if (!QueryLidar2WorldPose(lidar, &lidar2world_pose)) { AERROR << "Failed to query lidar pose"; return distance; } Eigen::Matrix4d lidar2camera_pose = static_cast<Eigen::Matrix<double, 4, 4, 0, 4, 4>>(world2camera_pose * lidar2world_pose);
时间: 2024-04-27 22:25:16 浏览: 123
这段代码主要实现了获取相机内参和位姿,以及获取激光雷达到相机的变换矩阵。具体步骤如下:
1. 先通过传入的相机对象获取相机的内参,即相机的焦距、像素中心点等参数,这里调用了QueryCameraModel函数,返回的是一个BaseCameraModelPtr类型的智能指针,指向了相机模型对象。
2. 如果获取相机模型对象失败,则输出错误信息并返回distance(距离)。
3. 接着调用QueryWorld2CameraPose函数获取相机在世界坐标系下的位姿,即相机的位置和朝向。
4. 如果获取相机位姿失败,则输出错误信息并返回distance。
5. 接着调用QueryLidar2WorldPose函数获取激光雷达在世界坐标系下的位姿。
6. 如果获取激光雷达位姿失败,则输出错误信息并返回distance。
7. 计算激光雷达到相机的变换矩阵,即lidar2camera_pose,这里将相机的位姿和激光雷达的位姿进行矩阵相乘得到。
8. 最后返回distance。
相关问题
转换成matlab:def severed_sphere(intrinsic_process, k1=5.5, k2=2): assert intrinsic_process.shape[0] == 2 intrinsic_process_temp = numpy.copy(intrinsic_process) #intrinsic_process_temp = (intrinsic_process_temp.T-numpy.mean(intrinsic_process_temp, axis=1).T).T observed_process = numpy.empty((3, intrinsic_process_temp.shape[1]), dtype=numpy.float64) observed_process[0] = numpy.sin(intrinsic_process_temp[0]*k1)*numpy.cos(intrinsic_process_temp[1]*k2) observed_process[1] = numpy.cos(intrinsic_process_temp[0]*k1)*numpy.cos(intrinsic_process_temp[1]*k2) observed_process[2] = numpy.sin(intrinsic_process_temp[1]*k2) return observed_process
在Matlab中,您可以将以下Python代码转换为对应的Matlab代码:
```matlab
function observed_process = severed_sphere(intrinsic_process, k1, k2)
assert(size(intrinsic_process, 1) == 2);
intrinsic_process_temp = intrinsic_process;
% intrinsic_process_temp = (intrinsic_process_temp.' - mean(intrinsic_process_temp, 2).').';
observed_process = zeros(3, size(intrinsic_process_temp, 2));
observed_process(1,:) = sin(intrinsic_process_temp(1,:) * k1) .* cos(intrinsic_process_temp(2,:) * k2);
observed_process(2,:) = cos(intrinsic_process_temp(1,:) * k1) .* cos(intrinsic_process_temp(2,:) * k2);
observed_process(3,:) = sin(intrinsic_process_temp(2,:) * k2);
end
```
请注意,在Matlab中没有直接相当于`empty`函数的功能,因此我们使用`zeros`函数来初始化`observed_process`数组。另外,对于行向量和列向量的转置,我们使用了`.`运算符。
转matlab: n_points_total = numpy.int(noisy_sensor_measured_total.shape[1]/(n_obs_in_sensor_array + 1)) intrinsic_process_total_reshaped = numpy.reshape(intrinsic_process_total, [dim_intrinsic, n_points_total, n_obs_in_sensor_array + 1], order='C') noisy_sensor_measured_total_reshaped = numpy.reshape(noisy_sensor_measured_total, [dim_measurement, n_points_total, n_obs_in_sensor_array + 1], order='C') intrinsic_process_base_total = intrinsic_process_total_reshaped[:, :, 0] intrinsic_process_step_total = intrinsic_process_total_reshaped[:, :, 1:] noisy_sensor_base_total = noisy_sensor_measured_total_reshaped[:, :, 0] n_obs_used_in_each_cluster = min(n_obs_used_in_cluster, n_obs_in_sensor_array) obs_used_in_each_cluster_indexes = numpy.random.choice(n_obs_in_sensor_array, size=n_obs_used_in_each_cluster, replace=False) sensor_array_matrix = sensor_array_matrix_dense[:, obs_used_in_each_cluster_indexes] noisy_sensor_step_total = noisy_sensor_measured_total_reshaped[:, :, 1:]
在Matlab中,您可以将以下Python代码转换为对应的Matlab代码:
```matlab
n_points_total = int(size(noisy_sensor_measured_total, 2) / (n_obs_in_sensor_array + 1));
intrinsic_process_total_reshaped = reshape(intrinsic_process_total, [dim_intrinsic, n_points_total, n_obs_in_sensor_array + 1]);
noisy_sensor_measured_total_reshaped = reshape(noisy_sensor_measured_total, [dim_measurement, n_points_total, n_obs_in_sensor_array + 1]);
intrinsic_process_base_total = intrinsic_process_total_reshaped(:, :, 1);
intrinsic_process_step_total = intrinsic_process_total_reshaped(:, :, 2:end);
noisy_sensor_base_total = noisy_sensor_measured_total_reshaped(:, :, 1);
n_obs_used_in_each_cluster = min(n_obs_used_in_cluster, n_obs_in_sensor_array);
obs_used_in_each_cluster_indexes = datasample(1:n_obs_in_sensor_array, n_obs_used_in_each_cluster, 'Replace', false);
sensor_array_matrix = sensor_array_matrix_dense(:, obs_used_in_each_cluster_indexes);
noisy_sensor_step_total = noisy_sensor_measured_total_reshaped(:, :, 2:end);
```
请注意,上述代码中的 `datasample` 函数用于在 `1:n_obs_in_sensor_array` 中随机选择 `n_obs_used_in_each_cluster` 个索引,并且不允许重复。如果您的Matlab版本不支持 `datasample` 函数,可以使用以下代码替代:
```matlab
obs_used_in_each_cluster_indexes = randsample(1:n_obs_in_sensor_array, n_obs_used_in_each_cluster, false);
```
这里使用了 `randsample` 函数来实现相同的功能。
阅读全文