使用theano的Glorot初始化搭建3DResNet网络
时间: 2024-04-30 09:20:17 浏览: 132
首先,要使用Theano框架构建3D ResNet网络,需要导入以下库:
```python
import theano
import theano.tensor as T
import numpy as np
```
接下来,我们需要定义一些辅助函数来构建ResNet网络。首先,定义一个函数,用于构建卷积层:
```python
def conv3d(input, filters, filter_size, stride=(1, 1, 1), pad='valid', name=None):
if pad == 'valid':
pad = (0, 0, 0)
elif pad == 'same':
pad = ((filter_size[0]-1)//2, (filter_size[1]-1)//2, (filter_size[2]-1)//2)
W = theano.shared(
np.random.uniform(low=-np.sqrt(6./(np.prod(filters)+filters[-1])), high=np.sqrt(6./(np.prod(filters)+filters[-1])), size=(filters[0], filters[1], filters[2], input.shape[1], filters[3])),
name=name+'_W', borrow=True)
b = theano.shared(np.zeros((filters[3],), dtype=theano.config.floatX), name=name+'_b', borrow=True)
conv_out = T.nnet.conv3d(input, W, border_mode=pad, subsample=stride)
return T.nnet.relu(conv_out + b.dimshuffle('x', 0, 'x', 'x', 'x'))
```
这个函数将会返回一个卷积层的输出,其中包含了ReLU激活函数。我们需要传入输入数据、卷积核的大小、stride、padding信息以及卷积层的名称。
接下来,我们需要定义一个函数,用于构建ResNet网络的残差块:
```python
def residual_block(input, filters, stride=(1, 1, 1), name=None):
conv1 = conv3d(input, filters, (1, 1, 1), stride=stride, pad='same', name=name+'_conv1')
conv2 = conv3d(conv1, filters, (3, 3, 3), stride=(1, 1, 1), pad='same', name=name+'_conv2')
conv3 = conv3d(conv2, filters*4, (1, 1, 1), stride=(1, 1, 1), pad='same', name=name+'_conv3')
if stride == (1, 1, 1):
shortcut = input
else:
shortcut = conv3d(input, filters*4, (1, 1, 1), stride=stride, pad='same', name=name+'_shortcut')
return T.nnet.relu(conv3 + shortcut)
```
这个函数将会返回一个残差块的输出,其中包含了ReLU激活函数。我们需要传入输入数据、卷积核的大小、stride以及残差块的名称。
接下来,我们可以开始构建3D ResNet网络。我们需要定义一个函数,用于构建3D ResNet网络:
```python
def build_3dresnet(input_shape, num_filters, num_blocks, num_classes):
input = T.tensor5('input')
conv1 = conv3d(input, (3, 3, 3, input_shape[0], num_filters), (7, 7, 7), stride=(2, 2, 2), pad='same', name='conv1')
pool1 = T.signal.pool.pool_3d(conv1, (3, 3, 3), ignore_border=True, st=stride, padding=(1, 1, 1), mode='max')
res = pool1
filters = num_filters
for i in range(num_blocks):
res = residual_block(res, filters, stride=(1, 1, 1), name='res'+str(i+1)+'_a')
for j in range(1, 3):
res = residual_block(res, filters, name='res'+str(i+1)+'_b'+str(j))
filters *= 2
pool2 = T.signal.pool.pool_3d(res, (res.shape[2], res.shape[3], res.shape[4]), ignore_border=True, st=(1, 1, 1), padding=(0, 0, 0), mode='max')
flatten = T.flatten(pool2, outdim=2)
fc = T.nnet.softmax(T.dot(flatten, np.random.uniform(low=-np.sqrt(6./(flatten.shape[1]+num_classes)), high=np.sqrt(6./(flatten.shape[1]+num_classes)), size=(flatten.shape[1], num_classes))))
return theano.function(inputs=[input], outputs=fc)
```
这个函数将会返回一个Theano函数,用于计算模型的输出。我们需要传入输入的shape、卷积层的数量、残差块的数量以及分类的数量。
最后,我们可以使用以下代码来构建模型并进行训练:
```python
input_shape = (3, 16, 112, 112)
num_filters = 64
num_blocks = [3, 4, 6, 3]
num_classes = 101
model = build_3dresnet(input_shape, num_filters, num_blocks, num_classes)
# 进行训练和测试
```
阅读全文