迪杰斯特拉算法求最短路径
时间: 2024-03-27 16:33:27 浏览: 83
迪杰斯特拉算法是一种用于求解最短路径的经典算法。它可以计算一个节点到其他所有节点的最短路径。下面是一个使用C++实现的迪杰斯特拉算法求最短路径的示例[^1]:
```cpp
#include <iostream>
#include <limits.h>
#define V 9
int minDistance(int dist[], bool sptSet[])
{
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
{
if (sptSet[v] == false && dist[v] <= min)
{
min = dist[v];
min_index = v;
}
}
return min_index;
}
void printSolution(int dist[])
{
std::cout << "Vertex \t\t Distance from Source" << std::endl;
for (int i = 0; i < V; i++)
{
std::cout << i << " \t\t " << dist[i] << std::endl;
}
}
void dijkstra(int graph[V][V], int src)
{
int dist[V];
bool sptSet[V];
for (int i = 0; i < V; i++)
{
dist[i] = INT_MAX;
sptSet[i] = false;
}
dist[src] = 0;
for (int count = 0; count < V - 1; count++)
{
int u = minDistance(dist, sptSet);
sptSet[u] = true;
for (int v = 0; v < V; v++)
{
if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v])
{
dist[v] = dist[u] + graph[u][v];
}
}
}
printSolution(dist);
}
int main()
{
int graph[V][V] = {{0, 4, 0, 0, 0, 0, 0, 8, 0},
{4, 0, 8, 0, 0, 0, 0, 11, 0},
{0, 8, 0, 7, 0, 4, 0, 0, 2},
{0, 0, 7, 0, 9, 14, 0, 0, 0},
{0, 0, 0, 9, 0, 10, 0, 0, 0},
{0, 0, 4, 14, 10, 0, 2, 0, 0},
{0, 0, 0, 0, 0, 2, 0, 1, 6},
{8, 11, 0, 0, 0, 0, 1, 0, 7},
{0, 0, 2, 0, 0, 0, 6, 7, 0}};
dijkstra(graph, 0);
return 0;
}
```
这段使用邻接矩阵表示图,其中`V`表示节点的数量。通过调用`dijkstra`函数,可以计算从源节点到其他所有节点的最短路径,并将结果打印出来。
阅读全文