用python编写函数,接收两个正整数作为参数,返回一个元组,其中第一个元素为最大公约数, 第二个元素为最小公倍数。
时间: 2024-11-29 11:35:54 浏览: 10
在Python中,你可以编写一个名为`gcd_lcm`的函数,利用辗转相除法(欧几里得算法)计算最大公约数(GCD),然后通过公式 `lcm(a, b) = abs(a*b) // gcd(a, b)` 计算最小公倍数(LCM)。以下是函数的实现:
```python
def gcd(a, b):
while b != 0:
a, b = b, a % b
return a
def lcm(a, b):
return abs(a * b) // gcd(a, b)
def calculate_gcd_lcm(num1, num2):
result = (gcd(num1, num2), lcm(num1, num2))
return result
# 示例:
num1 = 48
num2 = 18
gcd_num, lcm_num = calculate_gcd_lcm(num1, num2)
print(f"最大公约数 ({num1}, {num2}) 是: {gcd_num}")
print(f"最小公倍数 ({num1}, {num2}) 是: {lcm_num}")
相关问题
python编写函数,接收两个正整数作为参数,返回一个元组,其中第一个元素为最大公倍数,第二个为最小公约数
下面是一个实现这个功能的 Python 函数:
```python
def gcd(a, b):
"""
计算两个正整数的最大公约数
"""
if b == 0:
return a
else:
return gcd(b, a % b)
def lcm(a, b):
"""
计算两个正整数的最小公倍数
"""
return a * b // gcd(a, b)
def gcd_lcm(a, b):
"""
接收两个正整数作为参数,返回一个元组,其中第一个元素为最大公倍数,第二个为最小公约数
"""
return lcm(a, b), gcd(a, b)
```
我们首先定义了一个计算最大公约数的函数 `gcd()`,然后再定义一个计算最小公倍数的函数 `lcm()`,这两个函数都采用了递归算法来计算。
最后,我们定义了一个名为 `gcd_lcm()` 的函数,它接收两个正整数作为参数,然后返回一个元组,其中第一个元素为最大公倍数,第二个为最小公约数。这个函数内部调用了 `lcm()` 和 `gcd()` 函数来计算结果。
我们可以这样使用这个函数:
```python
>>> gcd_lcm(12, 18)
(36, 6)
```
这表示 12 和 18 的最小公倍数是 36,最大公约数是 6。
用python编写函数,接收两个正整数作为参数,返回一个元组,其中第一个元素为最大公约数,第二个元素为最小公倍数
好的,以下是一个实现这个功能的 Python 函数:
```python
def gcd_lcm(num1, num2):
"""
计算两个正整数的最大公约数和最小公倍数
:param num1: 第一个正整数
:param num2: 第二个正整数
:return: (最大公约数, 最小公倍数)
"""
# 计算最大公约数
a = num1
b = num2
while b:
a, b = b, a % b
gcd = a
# 计算最小公倍数
lcm = num1 * num2 // gcd
return (gcd, lcm)
```
两个正整数作为参数传递给函数 `gcd_lcm`,函数将返回一个元组,其中第一个元素是最大公约数,第二个元素是最小公倍数。
阅读全文