attn = (Q * (Q.shape[1] ** -0.5)) @ K.transpose(-2, -1)

时间: 2023-10-21 12:06:09 浏览: 51
这是一个自注意力机制中计算注意力分数的公式,其中Q、K、V分别表示查询、键、值,@表示张量的矩阵乘法运算符。通过将查询和键相乘得到注意力分数矩阵,再将该矩阵与值相乘得到注意力加权值。 具体来说,在一个序列中,每个元素都会有一个对应的查询向量,这个查询向量会去和序列中的其他元素做点乘来得到注意力分数,这个查询向量就是Q;同时序列中每个元素也对应一个键和一个值,这个键就是K,值就是V。通过计算Q和K的点积,再除以$\sqrt{d}$来得到注意力分数,最后再将W和V相乘得到输出结果。
相关问题

Swin-Transform模块代码详细

以下是Swin-Transform模块的详细代码示例: ```python import torch import torch.nn as nn import torch.nn.functional as F class SwinTransformer(nn.Module): def __init__(self, image_size=224, patch_size=4, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], num_classes=1000): super(SwinTransformer, self).__init__() assert image_size % patch_size == 0, "image size must be divisible by patch size" num_patches = (image_size // patch_size) ** 2 patch_dim = 3 * patch_size ** 2 # Patch Embedding self.patch_embed = nn.Conv2d(3, embed_dim, kernel_size=patch_size, stride=patch_size) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # Transformer Encoder self.transformer_encoder = TransformerEncoder(embed_dim, depths, num_heads) # Classification Head self.head = nn.Linear(embed_dim, num_classes) def forward(self, x): x = self.patch_embed(x) # [batch_size, embed_dim, H', W'] x = x.flatten(2).transpose(1, 2) # [batch_size, num_patches, embed_dim] batch_size, num_patches, _ = x.shape cls_tokens = self.cls_token.expand(batch_size, -1, -1) # [batch_size, 1, embed_dim] x = torch.cat((cls_tokens, x), dim=1) # [batch_size, num_patches+1, embed_dim] x = x + self.pos_embed # [batch_size, num_patches+1, embed_dim] x = self.transformer_encoder(x) x = x.mean(dim=1) # [batch_size, embed_dim] x = self.head(x) # [batch_size, num_classes] return x class TransformerEncoder(nn.Module): def __init__(self, embed_dim, depths, num_heads): super(TransformerEncoder, self).__init__() self.layers = nn.ModuleList() for i in range(len(depths)): self.layers.append(TransformerEncoderLayer(embed_dim, depths[i], num_heads[i])) def forward(self, x): for layer in self.layers: x = layer(x) return x class TransformerEncoderLayer(nn.Module): def __init__(self, embed_dim, depth, num_heads): super(TransformerEncoderLayer, self).__init__() self.attention_norm = nn.LayerNorm(embed_dim) self.ffn_norm = nn.LayerNorm(embed_dim) self.attention = Attention(embed_dim, num_heads) self.ffn = FeedForwardNetwork(embed_dim) self.depth = depth def forward(self, x): residual = x for _ in range(self.depth): x = x + self.attention_norm(self.attention(x)) x = x + self.ffn_norm(self.ffn(x)) return x class Attention(nn.Module): def __init__(self, embed_dim, num_heads): super(Attention, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.qkv = nn.Linear(embed_dim, embed_dim * 3) self.proj = nn.Linear(embed_dim, embed_dim) def forward(self, x): qkv = self.qkv(x) q, k, v = torch.split(qkv, self.embed_dim, dim=-1) q = q.reshape(*q.shape[:-1], self.num_heads, self.head_dim).transpose(-2, -3) k = k.reshape(*k.shape[:-1], self.num_heads, self.head_dim).permute(0, 2, 3, 1) v = v.reshape(*v.shape[:-1], self.num_heads, self.head_dim).transpose(-2, -3) attn_scores = torch.matmul(q, k) / (self.head_dim ** 0.5) attn_scores = F.softmax(attn_scores, dim=-1) attn_output = torch.matmul(attn_scores, v) attn_output = attn_output.transpose(-2, -3).reshape(*attn_output.shape[:-3], self.embed_dim) x = self.proj(attn_output) return x class FeedForwardNetwork(nn.Module): def __init__(self, embed_dim): super(FeedForwardNetwork, self).__init__() self.ffn = nn.Sequential( nn.Linear(embed_dim, 4 * embed_dim), nn.GELU(), nn.Linear(4 * embed_dim, embed_dim) ) def forward(self, x): return self.ffn(x) ``` 这就是Swin-Transform模块的详细代码。你可以将这段代码集成到你的FFANet模型中,并根据需要进行调整。记得根据实际情况修改输入输出尺寸、深度、头数等模块的参数。

python语言实现multi-head-self-attention示例的代码:

### 回答1: 以下是一个 Python 代码示例,用于实现 multi-head self-attention: ```python import torch import torch.nn as nn class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model self.depth = d_model // num_heads self.query_linear = nn.Linear(d_model, d_model) self.key_linear = nn.Linear(d_model, d_model) self.value_linear = nn.Linear(d_model, d_model) self.output_linear = nn.Linear(d_model, d_model) def forward(self, query, key, value, mask=None): batch_size = query.size() # Linear transformations query = self.query_linear(query) key = self.key_linear(key) value = self.value_linear(value) # Split into heads query = query.view(batch_size * self.num_heads, -1, self.depth) key = key.view(batch_size * self.num_heads, -1, self.depth) value = value.view(batch_size * self.num_heads, -1, self.depth) # Transpose for matrix multiplication query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) # Calculate scores scores = torch.matmul(query, key.transpose(-2, -1)) scores = scores / torch.sqrt(torch.tensor(self.depth).float()) # Apply mask (if provided) if mask is not None: mask = mask.unsqueeze(1) scores = scores.masked_fill(mask == , -1e9) # Softmax attention_weights = nn.Softmax(dim=-1)(scores) # Dropout attention_weights = nn.Dropout(p=.1)(attention_weights) # Multiply by values context = torch.matmul(attention_weights, value) # Reshape and concatenate context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.depth) # Linear transformation output = self.output_linear(context) return output ``` 希望对你有所帮助! ### 回答2: 下面是使用Python语言实现multi-head self-attention的一个示例代码: ``` import torch import torch.nn as nn import torch.nn.functional as F class MultiHeadSelfAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadSelfAttention, self).__init__() self.num_heads = num_heads self.d_head = d_model // num_heads self.fc_query = nn.Linear(d_model, d_model) self.fc_key = nn.Linear(d_model, d_model) self.fc_value = nn.Linear(d_model, d_model) self.fc_concat = nn.Linear(d_model, d_model) def forward(self, x): batch_size, seq_len, d_model = x.size() h = self.num_heads # Split input into multiple heads query = self.fc_query(x).view(batch_size, seq_len, h, self.d_head) key = self.fc_key(x).view(batch_size, seq_len, h, self.d_head) value = self.fc_value(x).view(batch_size, seq_len, h, self.d_head) # Compute attention scores scores = torch.matmul(query, key.transpose(-2, -1)) / (self.d_head ** 0.5) attn_weights = F.softmax(scores, dim=-1) # Apply attention weights to value vectors attended_values = torch.matmul(attn_weights, value) attended_values = attended_values.transpose(1, 2).contiguous().view(batch_size, seq_len, -1) # Concatenate and linearly transform attended values output = self.fc_concat(attended_values) return output # 使用示例 d_model = 128 num_heads = 8 seq_len = 10 batch_size = 4 input_tensor = torch.randn(batch_size, seq_len, d_model) attention = MultiHeadSelfAttention(d_model, num_heads) output = attention(input_tensor) print("Input Shape: ", input_tensor.shape) print("Output Shape: ", output.shape) ``` 上述代码定义了一个`MultiHeadSelfAttention`的类,其中`forward`函数实现了multi-head self-attention的计算过程。在使用示例中,我们输入一个大小为`(batch_size, seq_len, d_model)`的张量,经过multi-head self-attention计算后输出一个大小为`(batch_size, seq_len, d_model)`的张量。其中`d_model`表示输入的特征维度,`num_heads`表示attention头的数量。 ### 回答3: 下面是使用Python实现multi-head self-attention示例的代码: ```python import torch import torch.nn as nn class MultiHeadSelfAttention(nn.Module): def __init__(self, embed_size, num_heads): super(MultiHeadSelfAttention, self).__init__() self.embed_size = embed_size self.num_heads = num_heads self.head_size = embed_size // num_heads self.query = nn.Linear(embed_size, embed_size) self.key = nn.Linear(embed_size, embed_size) self.value = nn.Linear(embed_size, embed_size) self.out = nn.Linear(embed_size, embed_size) def forward(self, x): batch_size, seq_len, embed_size = x.size() # Split the embedding into num_heads and reshape x = x.view(batch_size, seq_len, self.num_heads, self.head_size) x = x.permute(0, 2, 1, 3) # Apply linear transformations to obtain query, key, and value query = self.query(x) key = self.key(x) value = self.value(x) # Compute scaled dot product attention scores scores = torch.matmul(query, key.permute(0, 1, 3, 2)) scores = scores / self.head_size**0.5 # Apply softmax to obtain attention probabilities attn_probs = nn.Softmax(dim=-1)(scores) # Apply attention weights to value and sum across heads attended = torch.matmul(attn_probs, value) attended = attended.permute(0, 2, 1, 3) attended = attended.contiguous().view(batch_size, seq_len, self.embed_size) # Apply output linear transformation output = self.out(attended) return output ``` 上述代码中定义了一个名为MultiHeadSelfAttention的类,继承自nn.Module,可以通过指定嵌入大小(embed_size)和头部数量(num_heads)来创建多头自注意力层。在前向传播方法forward中,先通过线性变换将输入张量分别变换为查询(query)、键(key)和值(value)张量。然后计算缩放点积注意力得分,将其作为注意力概率经过softmax函数进行归一化。通过注意力概率权重对值进行加权求和,并应用线性变换得到最终的输出张量。最后返回输出张量。

相关推荐

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

libaacs-devel-0.10.0-1.mga8.i586.rpm

rpm -i xx.rpm 只要报错遇到aacs的可以看看架构是否一致
recommend-type

几个ACM算法pdf.zip

[ACM国际大学生程序设计竞赛题解].pdf ACM模板-清华大学.pdf ACM算法模板(吉林大学).pdf
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。