python蚁群算法求解TSP问题
时间: 2023-05-28 14:06:56 浏览: 285
蚁群算法是一种仿生学算法,模拟蚂蚁在寻找食物时的行为,通过蚂蚁之间的信息交流和信息素的更新来找到最佳路径。
在TSP问题中,蚂蚁模拟从起点出发,经过每个城市一次且只经过一次,最终回到起点的路径。具体实现步骤如下:
1. 初始化信息素矩阵和蚂蚁位置矩阵。
2. 每只蚂蚁按照一定的策略选择下一个城市,并更新信息素矩阵。
3. 计算每只蚂蚁的路径长度,选择路径最短的蚂蚁作为全局最优解。
4. 根据全局最优解更新信息素矩阵。
5. 重复执行2-4步,直到满足停止条件。
实现代码如下:
```python
import numpy as np
# 城市数量
CITY_COUNT = 10
# 蚂蚁数量
ANT_COUNT = 20
# 信息素衰减因子
PHEROMONE_DECAY = 0.5
# 信息素增强因子
PHEROMONE_INCREASE = 2.0
# 蚂蚁走过路径的信息素初始值
PHEROMONE_INIT = 0.1
# 迭代次数
ITER_COUNT = 100
# 城市坐标
city_pos = np.random.rand(CITY_COUNT, 2)
# 距离矩阵
dist_mat = np.zeros((CITY_COUNT, CITY_COUNT))
for i in range(CITY_COUNT):
for j in range(i+1, CITY_COUNT):
dist_mat[i][j] = np.linalg.norm(city_pos[i]-city_pos[j])
dist_mat[j][i] = dist_mat[i][j]
# 信息素矩阵
pheromone_mat = np.ones((CITY_COUNT, CITY_COUNT)) * PHEROMONE_INIT
# 蚂蚁位置矩阵
ant_pos = np.zeros((ANT_COUNT, CITY_COUNT), dtype=np.int32)
# 蚂蚁走过的路径长度
ant_dist = np.zeros((ANT_COUNT,))
# 全局最优解
best_path = np.zeros((CITY_COUNT,), dtype=np.int32)
best_dist = np.inf
# 初始化蚂蚁位置
for i in range(ANT_COUNT):
ant_pos[i][0] = np.random.randint(CITY_COUNT)
# 迭代
for iter in range(ITER_COUNT):
# 蚂蚁选择下一个城市
for i in range(ANT_COUNT):
for j in range(1, CITY_COUNT):
current_city = ant_pos[i][j-1]
unvisited_city = np.delete(np.arange(CITY_COUNT), ant_pos[i][:j])
# 计算城市间的转移概率
prob = np.zeros((len(unvisited_city),))
for k, city in enumerate(unvisited_city):
prob[k] = pheromone_mat[current_city][city] ** PHEROMONE_INCREASE * \
(1.0 / dist_mat[current_city][city])
prob /= np.sum(prob)
# 选择下一个城市
next_city = np.random.choice(unvisited_city, p=prob)
ant_pos[i][j] = next_city
ant_dist[i] += dist_mat[current_city][next_city]
# 回到起点
ant_dist[i] += dist_mat[ant_pos[i][-1]][ant_pos[i][0]]
# 更新全局最优解
if ant_dist[i] < best_dist:
best_path = ant_pos[i]
best_dist = ant_dist[i]
# 更新信息素矩阵
pheromone_mat *= PHEROMONE_DECAY
for i in range(ANT_COUNT):
for j in range(CITY_COUNT):
current_city = ant_pos[i][j]
next_city = ant_pos[i][(j+1)%CITY_COUNT]
pheromone_mat[current_city][next_city] += 1.0 / ant_dist[i]
pheromone_mat[next_city][current_city] = pheromone_mat[current_city][next_city]
# 重置蚂蚁位置
for i in range(ANT_COUNT):
ant_pos[i][0] = np.random.randint(CITY_COUNT)
ant_dist[i] = 0.0
print("Best path:", best_path)
print("Best distance:", best_dist)
```
参考资料:
1. https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
2. https://github.com/ChenBohan/Python-TSP/blob/master/TSP_ACO.py
阅读全文