【问题描述】 给定一棵二叉树的先序遍历序列和中序遍历序列,求解: 1、这棵树的后序遍历序列; 2、从这棵树的右侧观察该树,从根节点到叶子节点,依次输出能被观测到的节点序列。用C++实现

时间: 2024-05-10 15:19:35 浏览: 4
【解题思路】 1、根据二叉树的先序遍历和中序遍历序列求解树的后序遍历,可以采用递归的方式进行求解。先序遍历序列的第一个元素为根节点,根据该节点在中序遍历序列中的位置,可以将中序遍历序列划分为左子树和右子树两部分。在先序遍历序列中,根据左子树和右子树的节点个数,也可以将先序遍历序列划分为左子树和右子树两部分。递归地进行该过程,直到序列长度为1时结束递归,返回该节点。 2、从根节点开始,按照右-根-左的顺序遍历树,记录下每个被观测到的节点,即右子树的叶子节点和根节点。采用递归的方式进行求解,对于每个节点,先访问它的右子树,再访问它本身,最后访问它的左子树。 【代码实现】 ```c++ #include <iostream> #include <vector> #include <unordered_map> using namespace std; // 定义二叉树节点 struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} }; // 根据先序遍历和中序遍历序列求解后序遍历序列 vector<int> postorderTraversal(vector<int>& preorder, vector<int>& inorder) { unordered_map<int, int> indexMap; int n = preorder.size(); for (int i = 0; i < n; i++) { indexMap[inorder[i]] = i; } vector<int> res; function<void(int, int, int, int)> helper = [&](int preLeft, int preRight, int inLeft, int inRight) { if (preLeft > preRight) { return; } int rootVal = preorder[preLeft]; int rootIndex = indexMap[rootVal]; int leftSize = rootIndex - inLeft; int rightSize = inRight - rootIndex; helper(preLeft + 1, preLeft + leftSize, inLeft, rootIndex - 1); helper(preLeft + leftSize + 1, preRight, rootIndex + 1, inRight); res.push_back(rootVal); }; helper(0, n - 1, 0, n - 1); return res; } // 从右侧观察二叉树,输出节点序列 vector<int> rightSideView(TreeNode* root) { vector<int> res; function<void(TreeNode*, int)> helper = [&](TreeNode* node, int depth) { if (node == nullptr) { return; } if (depth == res.size()) { res.push_back(node->val); } helper(node->right, depth + 1); helper(node->left, depth + 1); }; helper(root, 0); return res; } int main() { // 例子:先序遍历序列为[1,2,4,5,3,6],中序遍历序列为[4,2,5,1,3,6] vector<int> preorder{1, 2, 4, 5, 3, 6}; vector<int> inorder{4, 2, 5, 1, 3, 6}; vector<int> postorder = postorderTraversal(preorder, inorder); cout << "后序遍历序列:"; for (auto i : postorder) { cout << i << " "; } cout << endl; TreeNode* root = new TreeNode(1); root->left = new TreeNode(2); root->right = new TreeNode(3); root->left->right = new TreeNode(4); root->right->right = new TreeNode(5); vector<int> rightSideViewNodes = rightSideView(root); cout << "从右侧观察树,能被观测到的节点序列:"; for (auto i : rightSideViewNodes) { cout << i << " "; } cout << endl; return 0; } ```

相关推荐

最新推荐

recommend-type

基于Java的IndexBar Android字母索引栏设计源码

IndexBar Android字母索引栏设计源码:该项目基于Java开发,包含49个文件,主要使用Java语言。该设计源码是一个Android字母索引栏,适用于实现类似目录的快速导航功能,便于用户快速找到所需内容。
recommend-type

中国新能源汽车供应链前瞻报告解构新时代整零关系-30页.pdf.zip

中国新能源汽车供应链前瞻报告解构新时代整零关系-30页.pdf.zip
recommend-type

CAD LSP 画门合页 插件

CAD LSP 画门合页 插件 CAD LSP 画门合页 插件 \zkm 左开门 ykm 右开门 kk 开启捕捉 bb 关闭捕捉 \ROM 打印和保存门尺寸 qx 全部图层显示
recommend-type

Java_Spring Cloud和Docker的微服务架构.zip

Java_Spring Cloud和Docker的微服务架构
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依