范数在matlab中的代码
时间: 2023-08-31 17:12:50 浏览: 87
在MATLAB中,可以使用norm函数来计算向量或矩阵的范数。具体用法如下:
1. 计算向量的范数:
```matlab
x = [1; 2; 3];
norm(x) % 默认为2范数,输出3.7417
norm(x, 1) % 1范数,输出6
norm(x, Inf) % 无穷范数,输出3
```
2. 计算矩阵的范数:
```matlab
A = [1 2 3; 4 5 6; 7 8 9];
norm(A) % 默认为2范数,输出16.8481
norm(A, 1) % 1范数,输出18
norm(A, Inf) % 无穷范数,输出24
```
其中,norm函数的第一个参数是要计算范数的向量或矩阵,第二个参数是范数的类型,可以取1、2、Inf等值。
相关问题
matlab 求矩阵范数代码
在MATLAB中,可以使用`norm`函数来计算矩阵的范数。`norm`函数的语法如下:
```matlab
n = norm(A, p)
```
其中,`A`是待计算范数的矩阵,`p`是范数的类型。常见的范数类型包括:
- `1`:1-范数(列和范数)
- `2`:2-范数(谱范数)
- `inf`:无穷范数(行和范数)
以下是一个示例代码,演示如何计算矩阵的范数:
```matlab
% 创建一个3x3的矩阵
A = [1 2 3; 4 5 6; 7 8 9];
% 计算1-范数
n1 = norm(A, 1);
disp("1-范数:" + n1);
% 计算2-范数
n2 = norm(A, 2);
disp("2-范数:" + n2);
% 计算无穷范数
ninf = norm(A, inf);
disp("无穷范数:" + ninf);
```
运行以上代码,将会输出矩阵的1-范数、2-范数和无穷范数的值。
matlab中的范数
在Matlab中,我们可以使用`norm`函数来计算矩阵的范数。具体格式如下:
1. 如果想计算矩阵A的Frobenius范数,可以使用`n = norm(A, 'fro')`。这个函数会返回矩阵A的Frobenius范数,即所有元素的平方和的平方根。
2. 如果想计算矩阵A的欧几里德范数,可以使用`n = norm(A)`。这个函数会返回矩阵A的最大奇异值,也即矩阵A的谱范数。
除了这两种常见的范数,Matlab还提供了其他类型的范数计算方法,例如一范数、无穷范数等。可以根据具体需要来选择适当的函数进行计算。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [matlab norm 范式](https://blog.csdn.net/yihaizhiyan/article/details/6904599)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [L1范数最小化算法matlab代码(修改过可用C调用)](https://download.csdn.net/download/sunhan2004/15018635)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文
相关推荐
















