for j in range(0, Num_J): # 计量间 for t in range(Num_T): build_mixpump[j,t] = m.addVar(vtype=GRB.BINARY) # 计量间新建加热炉 for j in range(0, Num_J + Num_Z): for t in range(Num_T): T_in_CZ[j, t] = m.addVar() # 计量间、转油站进站温度 for j in range(0, Num_J + Num_J * Num_Z): for t in range(Num_T): T_in_CZ_mid[j, t] = m.addVar() # 计量间、转油站j的进站温度这段代码是用来干什么的
时间: 2024-04-06 20:35:18 浏览: 37
这段代码是用来为一个优化模型添加变量的,具体来说,它定义了三个变量矩阵 `build_mixpump`, `T_in_CZ`, `T_in_CZ_mid`,并使用 Gurobi 提供的 `addVar()` 方法将它们添加到了模型 `m` 中。其中 `build_mixpump` 是二进制变量,`T_in_CZ` 和 `T_in_CZ_mid` 是连续变量。这段代码中的循环语句可以理解为对这些变量进行初始化。
相关问题
def build_gwc_volume_cos(refimg_fea, targetimg_fea, maxdisp, num_groups): refimg_fea = refimg_fea/(torch.sum(refimg_fea**2, dim=1,keepdim=True).pow(1/2)+1e-05) targetimg_fea = targetimg_fea/(torch.sum(targetimg_fea**2, dim=1,keepdim=True).pow(1/2)+1e-05) B, C, H, W = refimg_fea.shape volume = refimg_fea.new_zeros([B, num_groups, maxdisp, H, W]) for i in range(maxdisp): if i > 0: volume[:, :, i, :, i:] = groupwise_correlation(refimg_fea[:, :, :, i:], targetimg_fea[:, :, :, :-i], num_groups) else: volume[:, :, i, :, :] = groupwise_correlation(refimg_fea, targetimg_fea, num_groups) volume = volume.contiguous() return volume
这是一个构建视差体积的函数,输入参数包括参考图像特征(refimg_fea)、目标图像特征(targetimg_fea)、最大视差(maxdisp)和分组数(num_groups)。首先,对参考图像特征和目标图像特征进行归一化处理。然后,根据最大视差和分组数创建一个大小为[B, num_groups, maxdisp, H, W]的零张量(volume)。接下来,通过循环遍历每个视差值i,计算对应视差的分组相关性并将结果存储在volume张量中。最后,返回计算完成的volume张量。
import torch import torch.nn as nn from torchtext.datasets import AG_NEWS from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator # 数据预处理 tokenizer = get_tokenizer('basic_english') train_iter = AG_NEWS(split='train') counter = Counter() for (label, line) in train_iter: counter.update(tokenizer(line)) vocab = build_vocab_from_iterator([counter], specials=["<unk>"]) word2idx = dict(vocab.stoi) # 设定超参数 embedding_dim = 64 hidden_dim = 128 num_epochs = 10 batch_size = 64 # 定义模型 class RNN(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(RNN, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, 4) def forward(self, x): x = self.embedding(x) out, _ = self.rnn(x) out = self.fc(out[:, -1, :]) return out # 初始化模型、优化器和损失函数 model = RNN(len(vocab), embedding_dim, hidden_dim) optimizer = torch.optim.Adam(model.parameters()) criterion = nn.CrossEntropyLoss() # 定义数据加载器 train_iter = AG_NEWS(split='train') train_data = [] for (label, line) in train_iter: label = torch.tensor([int(label)-1]) line = torch.tensor([word2idx[word] for word in tokenizer(line)]) train_data.append((line, label)) train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True) # 开始训练 for epoch in range(num_epochs): total_loss = 0.0 for input, target in train_loader: model.zero_grad() output = model(input) loss = criterion(output, target.squeeze()) loss.backward() optimizer.step() total_loss += loss.item() * input.size(0) print("Epoch: {}, Loss: {:.4f}".format(epoch+1, total_loss/len(train_data)))改错
在代码中出现了一个错误:缺少 `Counter` 的导入语句。需要在开头添加 `from collections import Counter`。
另外,在模型训练时,需要将模型设置为训练模式(`model.train()`),以启用 dropout 和 batch normalization 等功能。同时,还需要将输入和目标数据转移到 GPU 上进行计算,以加速训练过程。具体修改如下:
```
import torch
import torch.nn as nn
from torchtext.datasets import AG_NEWS
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from collections import Counter
# 数据预处理
tokenizer = get_tokenizer('basic_english')
train_iter = AG_NEWS(split='train')
counter = Counter()
for (label, line) in train_iter:
counter.update(tokenizer(line))
vocab = build_vocab_from_iterator([counter], specials=["<unk>"])
word2idx = dict(vocab.stoi)
# 设定超参数
embedding_dim = 64
hidden_dim = 128
num_epochs = 10
batch_size = 64
# 定义模型
class RNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim):
super(RNN, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, 4)
def forward(self, x):
x = self.embedding(x)
out, _ = self.rnn(x)
out = self.fc(out[:, -1, :])
return out
# 初始化模型、优化器和损失函数
model = RNN(len(vocab), embedding_dim, hidden_dim)
optimizer = torch.optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()
# 将模型设置为训练模式
model.train()
# 将数据转移到 GPU 上
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
train_iter = AG_NEWS(split='train')
train_data = []
for (label, line) in train_iter:
label = torch.tensor([int(label)-1]).to(device)
line = torch.tensor([word2idx[word] for word in tokenizer(line)]).to(device)
train_data.append((line, label))
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
# 开始训练
for epoch in range(num_epochs):
total_loss = 0.0
for input, target in train_loader:
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target.squeeze())
loss.backward()
optimizer.step()
total_loss += loss.item() * input.size(0)
print("Epoch: {}, Loss: {:.4f}".format(epoch+1, total_loss/len(train_data)))
```
阅读全文