p->counter = (current->counter + 1) >> 1; current->counter >>= 1; if (!current->counter) current->need_resched = 1; retval = p->pid; p->tgid = retval; INIT_LIST_HEAD(&p->thread_group); write_lock_irq(&tasklist_lock); if (clone_flags & CLONE_THREAD) { p->tgid = current->tgid; list_add(&p->thread_group, &current->thread_group); } SET_LINKS(p); hash_pid(p); nr_threads++; write_unlock_irq(&tasklist_lock);

时间: 2024-03-11 07:46:23 浏览: 15
这段代码看起来是关于进程调度方面的。它将当前进程的计数器值除以2并赋值新的进程,然后将当前进程的计数器值也除以2。当前进程的计数器值变为0,则设置标志以表明需要重新调度。接下来,将新进程添加到进程链表中并设置其进程 ID。如果使用了 CLONE_THREAD 标志,则将新线程添加到当前进程的线程组中。最后,更新进程哈希表并增加线程计数器。
相关问题

#include <iostream> using namespace std; class LoopCounter { private: int lower; // 下限 int upper; // 上限 int current; // 当前值 public: LoopCounter(int lower, int upper, int current) { this->lower = lower; this->upper = upper; this->current = current; } void add(int num) { // 加操作 current += num; while (current > upper) { // 超过上限,从下限重新开始 current -= (upper - lower + 1); } } void minus(int num) { // 减操作 current -= num; while (current < lower) { // 小于下限,从上限重新开始 current += (upper - lower + 1); } } void show() { // 显示当前值 cout << lower << " " << upper << " " << current << endl; } }; int main() { char op; int lower, upper, current, num; cin >> op; cin >> lower >> upper >> current; LoopCounter lc(lower, upper, current); // 初始化 while (op != 'D') { // 不断进行操作 switch (op) { case 'A': // 初始化 cin >> lower >> upper >> current; lc = LoopCounter(lower, upper, current); lc.show(); break; case 'B': // 加操作 cin >> num; lc.add(num); lc.show(); break; case 'C': // 减操作 cin >> num; lc.minus(num); lc.show(); break; default: break; } cin >> op; } return 0; }

这是一段 C++ 代码,实现了一个 LoopCounter 类,可以进行加减操作,并且在超过上限或小于下限时会从另一端重新开始计数。主函数中使用了一个 while 循环,不断进行操作,直到输入字符为 'D' 时退出循环。在 'A' 操作中,会重新初始化 LoopCounter 对象。在 'B' 和 'C' 操作中,会进行加减操作,并且输出当前值。

麻烦优化一下下列C++代码 void PIN_FAST_ANALYSIS_CALL onRead(THREADID threadid, ADDRINT memoryAddr){ ThreadData* t = get_tls(threadid); t->readCounter++; // get latest version value of this memory location map<ADDRINT, std::pair<vector<UINT32>, std::pair<THREADID, UINT32> > >::iterator it = t->shadowRead.find(memoryAddr); if (it != t->shadowRead.end()){ // if its in the thread's local memory /*(implementation of the last one value predictor)*/ // if it already exists. update the counter for the thread by 1 // for the location. it->second.first[threadid]++; } else { // if hasn't been read by current thread before //insert record into memoryMap vector <UINT32> temp(8,0); t->shadowRead[memoryAddr] = std::make_pair(temp, std::make_pair(0,0)); // insert pair of vector and another pair t->shadowRead[memoryAddr].first[threadid] = 1; } // Get last write to memoryAddr and save order with read in execution log PIN_GetLock(&writeLock, threadid + 1); rdOps++; unordered_map<ADDRINT, std::pair<vector<std::pair<THREADID, UINT32> > ,bool> >::iterator itt = memoryMap.find(memoryAddr); map<ADDRINT, std::pair<vector<UINT32>, std::pair<THREADID, UINT32> > >::iterator ita = t->shadowRead.find(memoryAddr); if ((itt != memoryMap.end()) && (itt->second.first.size() > 0) && (itt->second.first.back().first != t->tid) && (itt->second.first.back().first != ita->second.second.first && itt->second.first.back().second != ita->second.second.second)){ // optimize to weed out intra-thread dependencies on shared memory locations //EXECUTION LOG FORMAT WRITE-READ: WRITETHREAD WRITECOUNTER READ traceFileReads << itt->second.first.back().first << "," << itt->second.first.back().second << "," << t->tid << "," << t->readCounter << endl; } PIN_ReleaseLock(&writeLock);

以下是对给定代码进行优化的建议: 1. 减少锁的使用:在当前代码中,使用了两个锁 `writeLock` 和 `threadLock`。可以考虑将锁的范围缩小到仅在需要保护共享资源的关键部分使用,以减少锁的开销。 2. 使用 auto 关键字简化迭代器声明:可以使用 `auto` 关键字来自动推导迭代器类型,从而简化代码并提高可读性。 3. 减少无效的查找操作:在代码中多次查找相同的 `memoryAddr`,可以考虑将查找结果保存到临时变量中,以避免重复查找。 4. 减少不必要的显式创建对象:在代码中创建了多个临时对象,可以考虑使用局部变量或引用来代替,以减少不必要的对象创建和销毁。 5. 使用迭代器访问容器元素:在代码中使用了下标访问容器元素,可以考虑使用迭代器来访问容器元素,以提高效率。 6. 使用更合适的容器:在代码中使用了 `unordered_map` 和 `map`,可以根据具体需求选择更合适的容器。例如,如果只需要快速的查找操作,可以考虑使用 `unordered_map`。 以下是优化后的代码示例: ```cpp void PIN_FAST_ANALYSIS_CALL onRead(THREADID threadid, ADDRINT memoryAddr) { ThreadData* t = get_tls(threadid); t->readCounter++; auto it = t->shadowRead.find(memoryAddr); if (it != t->shadowRead.end()) { it->second.first[threadid]++; } else { vector<UINT32> temp(8, 0); t->shadowRead[memoryAddr] = {temp, {0, 0}}; t->shadowRead[memoryAddr].first[threadid] = 1; } PIN_GetLock(&writeLock, threadid + 1); rdOps++; auto itt = memoryMap.find(memoryAddr); auto ita = t->shadowRead.find(memoryAddr); if (itt != memoryMap.end() && itt->second.first.size() > 0 && (itt->second.first.back().first != t->tid) && (itt->second.first.back().first != ita->second.second.first) && (itt->second.first.back().second != ita->second.second.second)) { traceFileReads << itt->second.first.back().first << "," << itt->second.first.back().second << "," << t->tid << "," << t->readCounter << endl; } PIN_ReleaseLock(&writeLock); } ``` 在上述代码中,我将锁的范围缩小到仅在需要保护共享资源的关键部分使用,使用了 `auto` 关键字简化了迭代器声明,并且避免了不必要的查找操作和对象创建。此外,还可以根据具体需求进行进一步的优化和调整。请确保对共享数据的访问是线程安全的,并避免出现数据竞争和死锁等问题。

相关推荐

current_iter=0; % Loop counter while current_iter < max_iter for i=1:size(X,1) % Calculate the fitness of the population current_vulture_X = X(i,:); current_vulture_F=fobj(current_vulture_X,input_train,output_train); % Update the first best two vultures if needed if current_vulture_F<Best_vulture1_F Best_vulture1_F=current_vulture_F; % Update the first best bulture Best_vulture1_X=current_vulture_X; end if current_vulture_F>Best_vulture1_F if current_vulture_F<Best_vulture2_F Best_vulture2_F=current_vulture_F; % Update the second best bulture Best_vulture2_X=current_vulture_X; end end a=unifrnd(-2,2,1,1)*((sin((pi/2)*(current_iter/max_iter))^gamma)+cos((pi/2)*(current_iter/max_iter))-1); P1=(2*rand+1)*(1-(current_iter/max_iter))+a; % Update the location for i=1:size(X,1) current_vulture_X = X(i,:); % pick the current vulture back to the population F=P1*(2*rand()-1); random_vulture_X=random_select(Best_vulture1_X,Best_vulture2_X,alpha,betha); if abs(F) >= 1 % Exploration: current_vulture_X = exploration(current_vulture_X, random_vulture_X, F, p1, upper_bound, lower_bound); elseif abs(F) < 1 % Exploitation: current_vulture_X = exploitation(current_vulture_X, Best_vulture1_X, Best_vulture2_X, random_vulture_X, F, p2, p3, variables_no, upper_bound, lower_bound); end X(i,:) = current_vulture_X; % place the current vulture back into the population end current_iter=current_iter+1; convergence_curve(current_iter)=Best_vulture1_F; X = boundaryCheck(X, lower_bound, upper_bound); % fprintf('In Iteration %d, best estimation of the global optimum is %4.4f \n ', current_iter,Best_vulture1_F ); end end

最新推荐

recommend-type

完善的仓库管理系统代码 使用Vf

case 1:current(L);break;//调用入库出库函数 case 3:display(L);break;//调用显示输出函数 case 4:print(L);break;//调用打印函数 case 0:printf("\n bye!see you!\n"); getchar();getchar();exit(0);//退出程序 ...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。