用Dijkstra算法求出带权图A,G两点之间的最短路径

时间: 2023-11-12 15:40:44 浏览: 30
好的,我可以帮你解答这个问题。 首先,让我们了解一下 Dijkstra 算法的基本思想。它是一种贪心算法,用于解决带权图中单源最短路径问题。具体来说,它通过不断扩展当前最短路径的顶点来逐步确定起点到各个顶点的最短路径。 现在,我们来看一下如何用 Dijkstra 算法求解带权图 A,G 两点之间的最短路径: 1. 初始化 将起点 A 到各个顶点的距离初始化为无穷大,将 A 到 A 的距离设置为 0。 2. 选择顶点 从未确定最短路径的顶点中,选择与 A 距离最近的顶点 B,并标记 B 的最短路径已确定。 3. 更新距离 对于 B 的每个邻接顶点 C,如果 A 经过 B 到达 C 的距离比 A 直接到达 C 的距离更短,则更新 A 到 C 的距离为 A 到 B 的距离加上 B 到 C 的距离。 4. 重复步骤 2 和 3,直到所有顶点的最短路径都已确定。 最后,我们可以得到 A 到 G 的最短路径。 希望这个解答能够帮到你!
相关问题

如何用dijkstra算法求两点路径

Dijkstra算法是一种单源最短路径算法,可以用来求解一个节点到其他所有节点之间的最短路径。如果要求两点之间的路径,可以在运行Dijkstra算法时,记录下每个节点的前驱节点,这样就可以根据起点和终点的前驱节点,逆推出两点之间的路径。 具体步骤如下: 1. 初始化:将起点的距离设为0,将其他节点的距离设为无穷大,将起点加入到“待处理节点”集合中。 2. 进行循环,直到“待处理节点”集合为空:从“待处理节点”集合中选取一个距离最小的节点,将其从“待处理节点”集合中移除,并将其标记为“已处理节点”。 3. 对于选取的节点的所有邻居节点,计算从起点到该邻居节点的距离,如果该距离小于该邻居节点当前的距离,则更新邻居节点的距离,并将邻居节点的前驱节点设置为当前节点。 4. 重复步骤2和3,直到终点被标记为“已处理节点”。 5. 从终点开始,根据每个节点的前驱节点,逆推出起点到终点的路径。 需要注意的是,Dijkstra算法只能处理带权有向图或者带权无向图,如果图中存在负权边,则需要使用其他算法,例如Bellman-Ford算法。

短路径问题实际上是带权有向图(网)的一种应用,用Dijkstra算法求两个顶点间的最短路径 c++

是的,短路径问题可以用Dijkstra算法来求解。Dijkstra算法是一种贪心算法,用于求带权有向图中单个源点到其它所有顶点的最短路径。 以下是C++代码实现Dijkstra算法: ``` #include <iostream> #include <vector> #include <queue> #include <cstring> using namespace std; const int MAXN = 10010; const int INF = 1e9; struct Edge { int to, cost; Edge(int _to, int _cost) { to = _to; cost = _cost; } }; vector<Edge> G[MAXN]; // 邻接表存图 int d[MAXN]; // 距离数组 bool used[MAXN]; // 是否已经确定了最短距离 void dijkstra(int s) { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; memset(d, INF, sizeof(d)); memset(used, false, sizeof(used)); d[s] = 0; pq.push(make_pair(0, s)); while(!pq.empty()) { pair<int, int> p = pq.top(); pq.pop(); int v = p.second; if(used[v]) continue; used[v] = true; for(int i=0; i<G[v].size(); i++) { Edge e = G[v][i]; if(d[e.to] > d[v] + e.cost) { d[e.to] = d[v] + e.cost; pq.push(make_pair(d[e.to], e.to)); } } } } int main() { int n, m, s, t; cin >> n >> m >> s >> t; for(int i=0; i<m; i++) { int u, v, w; cin >> u >> v >> w; G[u].push_back(Edge(v, w)); } dijkstra(s); cout << d[t] << endl; return 0; } ``` 其中,G数组为邻接表存图,d数组为距离数组,used数组表示是否已经确定了最短距离。dijkstra函数中,首先初始化d数组和used数组,将起点s入队,然后每次取出最小距离的点v,遍历其所有出边,更新到其它点的距离。最后输出t点的距离即可。

相关推荐

寒假,皮皮准备去一些城市旅游。有些城市之间有公路,有些城市之间则没有,如下图。为了节省经费以及方便计划旅程,皮皮希望在出发之前知道任意两个城市之前的最短路程。 1033450-20180623095244077-353646184.png 上图中有4个城市8条公路,公路上的数字表示这条公路的长短。请注意这些公路是单向的。我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径。这个问题这也被称为“多源最短路径”问题。 现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储。比如1号城市到2号城市的路程为2,则设e[1][2]的值为2。2号城市无法到达4号城市,则设置e[2][4]的值为∞。另外此处约定一个城市自己是到自己的也是0,例如e[1][1]为0,具体如下。 1033450-20180623095252434-1650383278.png 基本要求 现在回到问题:如何求任意两点之间最短路径呢?通过之前的学习我们知道通过深度或广度优先搜索可以求出两点之间的最短路径。所以进行n2遍深度或广度优先搜索,即对每两个点都进行一次深度或广度优先搜索,便可以求得任意两点之间的最短路径。可是还有别的方法:Floyd-Warshall算法、Dijkstra算法等。请分别使用这两种算法求取任意两个城市到达的最短路径。允许通过所有顶点作为中转。

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。