dfa最小化完整代码python
时间: 2023-10-14 07:26:41 浏览: 211
下面是DFA最小化的完整Python代码:
```python
def dfa_minimization(dfa):
# Step 1: Divide the states into final and non-final states
final_states = set()
non_final_states = set()
for state in dfa.states:
if state in dfa.final_states:
final_states.add(state)
else:
non_final_states.add(state)
# Step 2: Create an initial partition
partitions = [final_states, non_final_states]
# Step 3: Refine the partition until no further refinement is possible
while True:
new_partitions = []
for partition in partitions:
if len(partition) == 1:
new_partitions.append(partition)
continue
# Divide the partition based on transitions
sub_partitions = {}
for state in partition:
next_states = {}
for symbol in dfa.alphabet:
next_state = dfa.transitions.get((state, symbol), None)
if next_state is not None:
next_states[symbol] = next_state
sub_partition_key = frozenset(next_states.items())
sub_partition = sub_partitions.get(sub_partition_key, set())
sub_partition.add(state)
sub_partitions[sub_partition_key] = sub_partition
new_partitions.extend(sub_partitions.values())
if len(new_partitions) == len(partitions):
break
partitions = new_partitions
# Step 4: Create a new DFA based on the final partition
new_states = {}
new_final_states = set()
for i, partition in enumerate(partitions):
new_state = 'S' + str(i)
new_states.update((state, new_state) for state in partition)
if partition & dfa.final_states:
new_final_states.add(new_state)
new_transitions = {}
for (state, symbol), next_state in dfa.transitions.items():
new_state = new_states[state]
new_next_state = new_states[next_state]
new_transitions[(new_state, symbol)] = new_next_state
return DFA(
alphabet=dfa.alphabet,
states=set(new_states.values()),
initial_state=new_states[dfa.initial_state],
final_states=new_final_states,
transitions=new_transitions
)
```
这段代码实现了DFA最小化算法,它接受一个DFA对象作为参数,并返回一个新的最小化DFA对象。
阅读全文