用python写一个将dfa最小化的代码
时间: 2024-05-12 08:15:32 浏览: 118
下面是用Python实现最小化DFA算法的示例代码:
```python
from collections import deque
def minimize_DFA(dfa):
# 将dfa中的终止状态和非终止状态分别存储到两个列表中
final_states = [s for s in dfa.states if dfa.is_final(s)]
non_final_states = [s for s in dfa.states if not dfa.is_final(s)]
# 将终止状态和非终止状态分别放入两个队列中
Q = deque([final_states, non_final_states])
# 创建空字典来存储新状态和旧状态之间的映射关系
new_states = {}
while Q:
# 从队列中取出一个状态集合
curr_states = Q.popleft()
# 对于当前状态集合中每个状态的每个输入,计算出下一状态集合
next_states = {}
for state in curr_states:
for input_char in dfa.alphabet:
next_state = dfa.transition(state, input_char)
next_states.setdefault(next_state, []).append(state)
# 将下一状态集合中存在的旧状态集合合并为一个新状态,并将其与旧状态集合做映射
for old_states in next_states.values():
if len(old_states) > 1:
new_state = tuple(sorted(old_states))
if new_state not in new_states:
Q.append(new_state)
new_states[new_state] = old_states
# 创建新的DFA对象
new_dfa = DFA()
# 添加新状态
for new_state, old_states in new_states.items():
new_dfa.add_state(new_state)
for old_state in old_states:
if dfa.is_start(old_state):
new_dfa.set_start(new_state)
if dfa.is_final(old_state):
new_dfa.add_final(new_state)
# 添加新的转移函数
for new_state in new_dfa.states:
for input_char in dfa.alphabet:
old_states = new_states[new_state]
next_state = dfa.transition(old_states[0], input_char)
new_next_state = new_states[next_state]
new_dfa.add_transition(new_state, input_char, new_next_state)
return new_dfa
```
注意,该代码中使用了一个自定义的DFA类来表示有限状态自动机。如果您没有实现类似的类,请根据您的实际情况进行修改。
阅读全文