使用两种方法判别(s+5)/20*s^4+21*s^3-31*s^2+23*s+5的稳定性,论述具体过程

时间: 2024-02-01 19:12:19 浏览: 14
方法一:判别式法 首先,将多项式化简为标准形式: (s+5)/20*s^4+21*s^3-31*s^2+23*s+5 = s^4/20 + (21/20)*s^3 - (31/20)*s^2 + (23/20)*s + 1/4 然后,计算判别式Δ: Δ = b^2 - 4ac 其中,a = 1/20,b = 21/20,c = 1/4 代入可得: Δ = (21/20)^2 - 4*(1/20)*(1/4) = 441/400 - 1/20 = 439/400 根据判别式法的结论: 当Δ>0时,多项式有两个实根和一对共轭复根,且多项式不稳定。 当Δ=0时,多项式有两个实根和两个重根,且多项式不稳定。 当Δ<0时,多项式有四个不同的实根,且多项式稳定。 因为Δ>0,所以该多项式不稳定。 方法二:Routh-Hurwitz判别法 将多项式写成矩阵形式: 1/20 23/20 0 0 -31/20 5/20 0 0 21/20 0 0 0 1/4 0 0 0 然后按照Routh-Hurwitz判别法的步骤,构造如下的表格: 1/20 23/20 -31/20 5/20 21/20 0 1/4 0 7/20 23/20 -20/23 0 155/529 0 因为表格中存在符号变化,所以该多项式不稳定。 综上,该多项式不稳定。
相关问题

使用两种方法判别该模块1+(s+6)/20s^4+21s^3-31s^2+23+6的稳定性,论述具体过程。

好的,针对您的问题,我将为您详细介绍两种判定系统稳定性的方法。 方法一:利用根轨迹法 1. 将系统转化为传递函数形式: G(s) = 1 + (s+6)/20s^4 + 21s^3 - 31s^2 + 23 + 6 2. 求出系统的特征方程: 20s^4 + 21s^3 - 31s^2 + 23s + 6 = 0 3. 绘制根轨迹: 根轨迹是指系统特征方程的根随着参数k的变化所形成的轨迹。通过绘制根轨迹,我们可以判断系统的稳定性。 4. 判断稳定性: 根据根轨迹的位置,我们可以得出以下结论: - 若根轨迹位于虚轴右侧,则系统不稳定; - 若根轨迹位于虚轴左侧,则系统稳定; - 若根轨迹经过虚轴,则系统边界稳定。 方法二:利用Routh判据 1. 将系统特征方程写成Routh表的形式: 20 -31 0 21 23 0 4 6 0 2. 按照Routh表的规则填充表格: 根据Routh表的规则,我们可以得出以下结论: - 若Routh表中所有系数均为正,则系统稳定; - 若Routh表中出现一列全为0的情况,则系统不稳定; - 若Routh表中存在一个或多个元素为0或负数的情况,则系统边界稳定。 综上所述,通过根轨迹法和Routh判据,我们可以判定该系统的稳定性。具体的计算过程和结果应该需要您自己完成,希望我的回答能对您有所帮助!

系统中的某组成模块对应的传递函数如下,试使用两种方法判别该模块1+(s+6)/20s^4+21s^3-31s^2+23+6的稳定性,论述具体过程。

方法一:判别系数法 根据判别系数法,首先求出特征方程的系数,即: a4=1/20, a3=21/20, a2=-31/20, a1=0, a0=23/20+6/20=29/20 然后进行判别,如果特征方程的所有根的实部均小于0,则系统稳定。如果存在特征方程的根的实部大于等于0,则系统不稳定。根据Routh-Hurwitz准则,可列出如下的判别表: |1/20 -31/20 0 | |21/20 23/20 0 | |29/20 0 0 | |6 0 0 | 由于判别表中第一列的元素均为正数,因此特征方程的所有根的实部均小于0,所以该系统是稳定的。 方法二:Nyquist稳定性判别法 首先将传递函数的分子、分母多项式分别表示为: N(s)=1+s/20 D(s)=20s^4+21s^3-31s^2+23s+6 然后根据Nyquist稳定性判别法,将传递函数的频率响应曲线绘制在复平面上,并计算其围绕原点的圈数。具体步骤如下: 1. 将传递函数的分母多项式D(s)的所有根的实部均减去一个极小正数ε,得到D(s-ε),使得所有根都位于左半个复平面内。 2. 根据D(s-ε)计算传递函数的频率响应曲线G(jω),并绘制在复平面上。 3. 计算频率ω从0到正无穷大时,G(jω)的轨迹绕原点的圈数N,如果N=0,则系统稳定;如果N>0,则系统不稳定。 通过计算可以得到,该系统的频率响应曲线围绕原点的圈数N=0,因此该系统是稳定的。 综上所述,通过判别系数法和Nyquist稳定性判别法两种方法均可判别出该系统是稳定的。

相关推荐

被试内设计:自变量1(阶段:辨别学习阶段/反转阶段)*自变量2(框架:积极/消极)*自变量3(反馈程度:部分反馈/完全反馈) •总共有4组两两成对出现的图片,组合1为积极框架下完全反馈的刺激,组合2是积极框架下部分反馈的刺激,组合3是消极框架下完全反馈的刺激,组合4是消极框架下部分反馈的刺激,电脑会一左一右的呈现图片刺激,被试按“F”键代表选择左边,按“J”键代表选择右边。第一个Run为辨别学习阶段,选择pos_1和pos_3是高奖赏概率,选择neg_1和neg_3是高惩罚概率。第二个Run为反转阶段,选择pos_1和pos_3是低奖赏概率,选择neg_1和neg_3是低惩罚概率。且每种组合中的两张图片收入或损失情况是独立的,如一个trial中pos_1收入+10并不代表pos_2就一定+0。 %% This is a main function to call other functions %% step01: collect information of participants name=inputdlg('请输入姓名','被试姓名',[1 60],{'abc'}); ID=inputdlg('请输入编号','被试id',[1 60],{'101'}); gender=inputdlg('请输入性别,男1,女2','被试性别',[1 60],{'2'}); ID=str2num(char(ID)); gender=str2num(char(gender)); %% step02: creat a main window [wname,HC,VC,slack]=creat_mainwindow; %% step03: to get initial parameters [stim_w,exp_seq,RT,ACC,tn,stim_dur,j_dur,startK,redK,greenK]=predata(wname); %% step04: present instructions getready(startK,HC,VC,wname); %% step05: present stimuli t=GetSecs;%获取当前时刻 end %% step 06: save data to the disk abc=fix(clock); path=pwd; if gender==1 fidraw=fopen([path '\Data\stroop_' char(name) '_' num2str(ID) '_' num2str(abc(4)) '_' num2str(abc(5)) '_Male.txt'],'a'); elseif gender==2 fidraw=fopen([path '\Data\stroop_' char(name) '_' num2str(ID) '_' num2str(abc(4)) '_' num2str(abc(5)) '_Female.txt'],'a'); end fprintf(fidraw,'Date \t Name \t ID \t Gender \t Trial \t condition \t stim_id \t color_id \t RT \t ACC \t ITI \t \n'); collect_data(name,ID,gender,RT,ACC,exp_seq,tn,j_dur,fidraw); %% step07: close window Screen('CloseAll'); sca fclose('all'); 根据题目,修改以上的主函数编码以及补充step05主函数的编码,Matlab

最新推荐

recommend-type

基于Java实现的明日知道系统.zip

基于Java实现的明日知道系统
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。