A = diag(a(1:N-2), -2) + diag(a(N-1:N), N-2); A = A + diag(b(1:N-1), -1) + diag(b(N), N-1); A = A + diag(c); A = A + diag(d(1:N-1), 1) + diag(d(N), -(N-1)); A = A + diag(e(1:N-2), 2) + diag(e(N-1:N), -(N-2));各个详细解释代码

时间: 2023-10-08 16:12:23 浏览: 25
这段代码定义了一个N阶矩阵A,其中对角线上的元素由a、b、c、d、e五个向量确定,具体解释如下: - 第一行定义了A矩阵的第三条次对角线和倒数第三条次对角线上的元素,分别由a(N-1:N)和a(1:N-2)向量确定,diag函数生成了对应的对角线矩阵,并将它们相加。 - 第二行定义了A矩阵的第二条次对角线和倒数第二条次对角线上的元素,分别由b(N)和b(1:N-1)向量确定,diag函数生成了对应的对角线矩阵,并将它们相加。 - 第三行定义了A矩阵的主对角线上的元素,由c向量确定,diag函数生成了对应的对角线矩阵,并将它们相加。 - 第四行定义了A矩阵的第一条次对角线和倒数第一条次对角线上的元素,分别由d(N)和d(1:N-1)向量确定,diag函数生成了对应的对角线矩阵,并将它们相加。 - 第五行定义了A矩阵的第二条对角线和倒数第二条对角线上的元素,分别由e(N-1:N)和e(1:N-2)向量确定,diag函数生成了对应的对角线矩阵,并将它们相加。 最终,所有的对角线矩阵被相加,生成了完整的A矩阵。
相关问题

A = diag(a(1:N-2), -2) + diag(a(N-1:N), N-2); 生成矩阵模板表示

这段代码定义了一个N阶矩阵A,其中对角线上的元素由a向量确定。下面是生成的矩阵模板表示: ``` | 0 0 a(1) a(2) 0 ... 0 0 0 | | 0 0 0 a(1) a(2) ... 0 0 0 | | a(N-1) a(N) 0 0 a(1) ... 0 0 0 | | a(N-2) a(N-1) 0 0 0 ... 0 0 0 | | 0 a(N-2) a(N-1) 0 0 ... 0 0 0 | | ... ... ... ... ... ... ... ... ... | | 0 0 0 ... ... ... 0 a(1) a(2) | | 0 0 0 0 ... ... a(N-1) a(N) 0 | | 0 0 0 0 0 ... a(N-2) a(N-1) 0 | ``` 其中,a向量对应对角线上的元素,第一条次对角线和倒数第一条次对角线上的元素由a(N-1:N)和a(1:N-2)确定。具体解释如下: - 第一行定义了A矩阵的第三条次对角线和倒数第三条次对角线上的元素,由a(1:N-2)向量确定,diag函数生成了对应的对角线矩阵,并将它们相加。 - 第二行定义了A矩阵的第二条次对角线和倒数第二条次对角线上的元素,由a(N-1:N)向量确定,diag函数生成了对应的对角线矩阵,并将它们相加。 - 其余的行则对应了矩阵A的主对角线和其他对角线上的元素,由a向量确定,diag函数生成了对应的对角线矩阵,并将它们相加。 最终,所有的对角线矩阵被相加,生成了完整的A矩阵。

优化这段代码 for k=1:1:20 N=10*k; A=zeros(N,N); b=zeros(N,1); u=zeros(N,1); h=(right-left)/N; x1=[left : h : right]; x2=[x1(1)+h/2 : h : x1(N)+h/2]; for i=1:1:N-1 hi1=x1(i+1)-x1(i); hi2=x1(i+2)-x1(i+1); A(i,i)=p(x2(i+1))/hi1 + p(x2(i))/hi2 + (hi1+hi2)/2*q(x1(i+1)); A(i,i+1)=-p(x2(i+1))/hi2; b(i)=(hi1+hi2)/2*f(x1(i+1)); if i~=1 A(i,i-1)=-p(x2(i))/hi1; end end

可以尝试以下优化: 1. 向量化变量和操作,尽量使用向量和矩阵运算代替循环。例如,可以将 x1 和 x2 合并成一个向量 x,并用 diff 函数计算 hi1 和 hi2,用 .* 和 ./ 运算代替循环中的乘法和除法。 2. 避免重复计算。例如,可以将 (hi1+hi2)/2 计算出来,然后重复使用。 3. 预分配矩阵和向量。可以在循环外部预先分配 A、b 和 u 的大小,避免循环中重复分配空间。 下面是优化后的代码示例: ``` for k = 1:20 N = 10*k; A = zeros(N-1, N-1); b = zeros(N-1, 1); u = zeros(N, 1); h = (right-left)/N; x = linspace(left, right, N+1); x2 = x(1:end-1) + h/2; hi1 = diff(x); hi2 = diff(x([2:end, end])); p1 = p(x2)./hi1; p2 = p(x2)./hi2; q1 = (hi1+hi2)/2 .* q(x(2:end-1)); f1 = (hi1+hi2)/2 .* f(x(2:end-1)); A = diag(p1 + p2 + q1) + diag(-p2(1:end-1), -1) + diag(-p1(2:end), 1); b = f1; u(2:end-1) = A\b; end ```

相关推荐

优化以下代码% 设置参数 t = 0.03; % 时间范围,计算到0.03秒 x = 1; y = 1; % 空间范围,0-1米 m = 320; % 时间t方向分320个格子 n = 32; % 空间x方向分32个格子 k = 32; % 空间y方向分32个格子 ht = t / (m - 1); % 时间步长dt hx = x / (n - 1); % 空间步长dx hy = y / (k - 1); % 空间步长dy hx2 = hx^2; hy2 = hy^2; % 初始化矩阵 u = zeros(m, n, k); % 设置边界 [x, y] = meshgrid(0:hx:1, 0:hy:1); u(1, :, :) = sin(4 * pi * x) + cos(4 * pi * y); % 按照公式进行差分 for ii = 1 : m - 1 u_prev = u(ii, :, :); u_next = u_prev; for kk = 2 : k - 1 u_prev_k = u_prev(:, kk); u_next_k = u_next(:, kk); u_prev_kk_1 = u_prev(:, kk + 1); u_prev_kk_1(1) = u_prev_k(1); u_prev_kk_1(end) = u_prev_k(end); u_prev_kk_2 = u_prev(:, kk - 1); u_prev_kk_2(1) = u_prev_k(1); u_prev_kk_2(end) = u_prev_k(end); A = diag(ones(n - 3, 1), 1) - 2 * diag(ones(n - 2, 1)) + diag(ones(n - 3, 1), -1); B = diag(ones(n - 3, 1), 1) + diag(ones(n - 3, 1), -1) + 2 * diag(ones(n - 2, 1)); C = diag(ones(n - 3, 1), 1) - 2 * diag(ones(n - 2, 1)) + diag(ones(n - 3, 1), -1); D = u_prev_kk_1 / hy2; E = u_prev_kk_2 / hy2; F = u_prev_k / hx2 + 1 / ht; G = u_prev_k / hx2 - 1 / ht; H = u_prev_kk_1 / hy2 + u_prev_kk_2 / hy2 + 1 / ht; I = u_prev_kk_1 / hy2 + u_prev_kk_2 / hy2 - 1 / ht; K = B - ht * F; L = B + ht * G; M = A + ht * D; N = C - ht * E; u_next(:, 2 : end - 1, kk) = thomas(K, M, N, H); u_next(:, 2 : end - 1, kk) = thomas(L, N, M, I); end u(ii + 1, :, :) = u_next; end % 绘制图像 parfor i = 1 : m figure(1); mesh(x, y, reshape(u(i, :, :), [n k])); axis([0 1 0 1 -2 2]); end % Thomas 算法求解三对角线性方程组 function x = thomas(A, B, C, D) n = length(D); for k = 2 : n m = A(k) / B(k - 1); B(k) = B(k) - m * C(k - 1); D(k) = D(k) - m * D(k - 1); end x(n) = D(n) / B(n); for k = n - 1 : -1 : 1 x(k) = (D(k) - C(k) * x(k + 1)) / B(k); end end

clc clear all; close all; %%6-9 T=0.2; Q=0.9; sigma=sqrt(Q); R=0.6; I=eye(3);%返回3*3单位矩阵 N=200; a=0.11; w=sigma*randn(N,1); pusi=sqrt(R)*sqrt(1-exp(-2*a*T))*randn(N,1); Ps=exp(-a*T); v=zeros(N,1); v(1,1)=pusi(1,1); for i=2:N v(i,1)=Ps*v(i-1,1)+pusi(i,1); end Phi=[1 T 0.5*T^2;0 1 T;0 0 1]; G=[0 0 T]'; H=[1 0 0]; xr(: ,1)=zeros(3,1); xr(3,1)=w(1,1); for i=2:N xr(:, i)=Phi*xr(: ,i-1)+G*w(i,1); z(:,i)=H*xr(:,i)+v(i,1); end Qtemp=G*Q*G'; R_star=H*Qtemp*H'+R; J=Qtemp*H'*inv(R_star); H_star=H*Phi-Ps*H; Phi_star=Phi-J*H_star; Q_star=Qtemp-Qtemp*H'*inv(R_star)*H*Qtemp; for i=1:N-1 z_star(:, i)=z(:,i+1)-Ps*z(:,i) ; end xe(:, 1)=zeros(3,1); Ppos=eye(3); Ppre(:, 1)=diag(Ppos); Pest(:, 1)=diag(Ppos); xe(:,1)=xe(:,1)+Ppos*H'*inv(H*Ppos*H'+R)*(z(:,1)-H*xe(:,1)); Ppos=inv(inv(Ppos)+H'*inv(R)*H); for i=2:N-1 x(:,i)=Phi_star*xe(: ,i-1)+J*z_star(:, i-1); Pneg=Phi_star*Ppos*Phi_star'+Q_star; Ppre(:,i)=diag(Pneg); K(:,i)=Pneg*H_star'*inv(H_star*Pneg*H_star'+R_star); Ppos=(I-K(:,i)*H_star)*Pneg; Pest(:,i)=diag(Ppos);%提取对角元素 xe(:,i)=x(:,i)+K(:,i)*(z_star(:, i)-H_star*x(:,i))%状态估计 end xe1(:,1)=zeros(3,1); Ppos1=eye(3) ; Ppre1(:,1)=diag(Ppos1); Pest1(:,1)=diag(Ppos1); R1=R*(1-exp(-2*a*T)); for i=2:N-1 x1(:,i)=Phi_star*xe1(:,i-1); Pneg1=Phi*Ppos1*Phi'+G*Q*G'; Ppre1(:,i)=diag (Pneg1); K1(:,i)=Pneg1*H'*inv(H*Pneg1*H'+R1); Ppos1=(I-K1(:,i)*H)*Pneg1; Pest1(: , i)=diag(Ppos1);%提取对角元素 xe1(:,i)=x1(:, i)+K1(:,i)*(z(:,i)-H*x1(:,i))%状态估计 end pos_diff=xe(1,: )-xr(1,1:N-1); pos_diff1=xe1(1,:)-xr(1,1:N-1); pos_diff_m=mean(pos_diff); pos_diff_s=std(pos_diff); pos_diff_m1=mean(pos_diff1); pos_diff_s1=std(pos_diff1); t=(1:N-1)*T; plot(t, pos_diff,'b-', t, pos_diff1, 'ro--') ; legend('状态扩展','近似为白噪声'); xlabel('时间(s)'); xlabel('位置误差(m)')代码解析

最新推荐

recommend-type

node-v4.9.0-linux-armv7l.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v4.8.4-linux-armv6l.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。