epoch-loss 和epoch_val_loss

时间: 2023-09-18 17:07:41 浏览: 91
epoch-loss 和 epoch_val_loss 是在深度学习中常用的指标,用于评估模型的训练和验证效果。 epoch-loss 是在模型训练过程中,每个 epoch 结束时计算的训练集上的损失,它反映了模型对训练数据的拟合程度。通常我们希望 epoch-loss 能够逐渐减小,表示模型不断优化。 epoch_val_loss 是在模型验证过程中,每个 epoch 结束时计算的验证集上的损失,它反映了模型对新数据的泛化能力。通常我们希望 epoch_val_loss 能够稳定或者逐渐减小,表示模型对新数据的预测效果比较好。 通过观察 epoch-loss 和 epoch_val_loss 的变化趋势,我们可以判断模型是否存在欠拟合或者过拟合,并对模型进行调整。
相关问题

val_loss=[] val_epoch_loss=0 val_loss=loss_function(y_pred,y) val_epoch_loss += val_loss.item() val_epoch_loss /= step val_loss.append(val_epoch_loss)这段代码的含义

这段代码是在进行模型训练的过程中,计算每个 epoch(训练轮数)的验证集损失(validation loss)并将其存储在一个列表中。具体含义如下: - `val_loss=[]`:定义一个空列表,用于存储每个 epoch 的验证集损失。 - `val_epoch_loss=0`:定义一个变量 `val_epoch_loss`,用于累加每个 batch(批次)的验证集损失。 - `val_loss=loss_function(y_pred,y)`:使用预测值 `y_pred` 和真实值 `y` 计算当前 batch 的验证集损失。 - `val_epoch_loss += val_loss.item()`:将当前 batch 的验证集损失加到 `val_epoch_loss` 变量中。 - `val_epoch_loss /= step`:计算当前 epoch 的平均验证集损失,其中 `step` 表示当前 epoch 中 batch 的数量。 - `val_loss.append(val_epoch_loss)`:将当前 epoch 的平均验证集损失添加到 `val_loss` 列表中。 这段代码的目的是在训练过程中对模型进行评估,以确保模型在验证集上的性能是否有所提高。每个 epoch 结束时,都会计算一次验证集损失,并将其存储在 `val_loss` 列表中。最终,可以使用这个列表来绘制损失曲线,以帮助分析模型的性能。

给你提供了完整代码,但在运行以下代码时出现上述错误,该如何解决?Batch_size = 9 DataSet = DataSet(np.array(x_train), list(y_train)) train_size = int(len(x_train)*0.8) test_size = len(y_train) - train_size train_dataset, test_dataset = torch.utils.data.random_split(DataSet, [train_size, test_size]) TrainDataloader = Data.DataLoader(train_dataset, batch_size=Batch_size, shuffle=False, drop_last=True) TestDataloader = Data.DataLoader(test_dataset, batch_size=Batch_size, shuffle=False, drop_last=True) model = Transformer(n_encoder_inputs=3, n_decoder_inputs=3, Sequence_length=1).to(device) epochs = 10 optimizer = torch.optim.Adam(model.parameters(), lr=0.0001) criterion = torch.nn.MSELoss().to(device) val_loss = [] train_loss = [] best_best_loss = 10000000 for epoch in tqdm(range(epochs)): train_epoch_loss = [] for index, (inputs, targets) in enumerate(TrainDataloader): inputs = torch.tensor(inputs).to(device) targets = torch.tensor(targets).to(device) inputs = inputs.float() targets = targets.float() tgt_in = torch.rand((Batch_size, 1, 3)) outputs = model(inputs, tgt_in) loss = criterion(outputs.float(), targets.float()) print("loss", loss) loss.backward() optimizer.step() train_epoch_loss.append(loss.item()) train_loss.append(np.mean(train_epoch_loss)) val_epoch_loss = _test() val_loss.append(val_epoch_loss) print("epoch:", epoch, "train_epoch_loss:", train_epoch_loss, "val_epoch_loss:", val_epoch_loss) if val_epoch_loss < best_best_loss: best_best_loss = val_epoch_loss best_model = model print("best_best_loss ---------------------------", best_best_loss) torch.save(best_model.state_dict(), 'best_Transformer_trainModel.pth')

根据你提供的完整代码,错误信息可能是在以下部分出现问题: ```python for index, (inputs, targets) in enumerate(TrainDataloader): # ... tgt_in = torch.rand((Batch_size, 1, 3)) outputs = model(inputs, tgt_in) # ... ``` 你在每次循环中都使用 `torch.rand` 函数生成了一个形状为 `(Batch_size, 1, 3)` 的随机张量 `tgt_in`,然后将其作为模型的输入之一。然而,这个随机张量的维度不匹配模型的期望输入维度。 为了解决这个问题,你可以将 `tgt_in` 的维度调整为与模型期望的维度相匹配。根据你之前提供的信息,`n_decoder_inputs` 是模型期望的输入维度,因此可以使用 `torch.rand` 生成一个形状为 `(Batch_size, n_decoder_inputs, Sequence_length)` 的随机张量。根据你的代码,`n_decoder_inputs` 和 `Sequence_length` 都是 3,所以你可以将以下行: ```python tgt_in = torch.rand((Batch_size, 1, 3)) ``` 更改为: ```python tgt_in = torch.rand((Batch_size, 3, 1)) ``` 这样,`tgt_in` 的维度就与模型的期望输入维度匹配了。请尝试进行这个修改并重新运行代码,看看是否能够解决错误。

相关推荐

60/60 [==============================] - 19s 89ms/step - loss: 229.5776 - accuracy: 0.7818 - val_loss: 75.8205 - val_accuracy: 0.2848 Epoch 2/50 60/60 [==============================] - 5s 78ms/step - loss: 59.5195 - accuracy: 0.8323 - val_loss: 52.4355 - val_accuracy: 0.7152 Epoch 3/50 60/60 [==============================] - 5s 77ms/step - loss: 47.9256 - accuracy: 0.8453 - val_loss: 47.9466 - val_accuracy: 0.2848 Epoch 4/50 60/60 [==============================] - 5s 77ms/step - loss: 41.7355 - accuracy: 0.8521 - val_loss: 37.7279 - val_accuracy: 0.2848 Epoch 5/50 60/60 [==============================] - 5s 76ms/step - loss: 40.1783 - accuracy: 0.8505 - val_loss: 40.2293 - val_accuracy: 0.7152 Epoch 6/50 60/60 [==============================] - 5s 76ms/step - loss: 37.8785 - accuracy: 0.8781 - val_loss: 38.5298 - val_accuracy: 0.2848 Epoch 7/50 60/60 [==============================] - 5s 77ms/step - loss: 37.1490 - accuracy: 0.8786 - val_loss: 37.1918 - val_accuracy: 0.2848 Epoch 8/50 60/60 [==============================] - 5s 78ms/step - loss: 34.6709 - accuracy: 0.9156 - val_loss: 34.0621 - val_accuracy: 0.2765 Epoch 9/50 60/60 [==============================] - 5s 76ms/step - loss: 35.7891 - accuracy: 0.8849 - val_loss: 37.8741 - val_accuracy: 0.7152 Epoch 10/50 60/60 [==============================] - 5s 76ms/step - loss: 34.5359 - accuracy: 0.9141 - val_loss: 35.2664 - val_accuracy: 0.7152 Epoch 11/50 60/60 [==============================] - 5s 76ms/step - loss: 34.6172 - accuracy: 0.9016 - val_loss: 34.5135 - val_accuracy: 0.6258 Epoch 12/50 60/60 [==============================] - 5s 76ms/step - loss: 34.2331 - accuracy: 0.9083 - val_loss: 34.0945 - val_accuracy: 0.9168 Epoch 13/50 60/60 [==============================] - 5s 79ms/step - loss: 37.4175 - accuracy: 0.9000 - val_loss: 37.7885 - val_accuracy: 0.7152 16/16 - 0s - loss: 34.0621 - accuracy: 0.2765 - 307ms/epoch - 19ms/step Test accuracy: 0.27650728821754456

详细分析一下python代码:import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.01, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=True, min_lr=0) loss_hist, acc_hist = [], [] loss_hist_val, acc_hist_val = [], [] for epoch in range(140): running_loss = 0.0 correct = 0 for data in train_loader: batch, labels = data batch, labels = batch.to(device), labels.to(device) optimizer.zero_grad() outputs = net(batch) loss = criterion(outputs, labels) loss.backward() optimizer.step() # compute training statistics _, predicted = torch.max(outputs, 1) correct += (predicted == labels).sum().item() running_loss += loss.item() avg_loss = running_loss / len(train_set) avg_acc = correct / len(train_set) loss_hist.append(avg_loss) acc_hist.append(avg_acc) # validation statistics net.eval() with torch.no_grad(): loss_val = 0.0 correct_val = 0 for data in val_loader: batch, labels = data batch, labels = batch.to(device), labels.to(device) outputs = net(batch) loss = criterion(outputs, labels) _, predicted = torch.max(outputs, 1) correct_val += (predicted == labels).sum().item() loss_val += loss.item() avg_loss_val = loss_val / len(val_set) avg_acc_val = correct_val / len(val_set) loss_hist_val.append(avg_loss_val) acc_hist_val.append(avg_acc_val) net.train() scheduler.step(avg_loss_val) print('[epoch %d] loss: %.5f accuracy: %.4f val loss: %.5f val accuracy: %.4f' % (epoch + 1, avg_loss, avg_acc, avg_loss_val, avg_acc_val))

最新推荐

recommend-type

关于__Federico Milano 的电力系统分析工具箱.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

mlab-upenn 研究小组的心脏模型模拟.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

设计一个算法,输出在顺序表{3,6,2,10,1,8,5,7,4,9}中采用顺序方法查找关键字5的过程。

好的,我来回答你的问题。 在顺序表中查找关键字5的过程如下: 1. 从顺序表的第一个元素(即3)开始,逐个比较元素的值与目标值5是否相等。 2. 发现第一个元素3不等于目标值5,继续向下查找。 3. 查找到第三个元素2时,发现该元素也不等于目标值5,继续向下查找。 4. 查找到第四个元素10时,发现该元素也不等于目标值5,继续向下查找。 5. 查找到第五个元素1时,发现该元素也不等于目标值5,继续向下查找。 6. 查找到第六个元素8时,发现该元素也不等于目标值5,继续向下查找。 7. 查找到第七个元素5时,发现该元素等于目标值5,查找成功。 因此,顺序表中采用顺序方法查找关键